

Institute of Transportation and Traffic Engineering
School of Engineering and Applied Science
University of California
Los Angeles

Prepared for National Highway Traffic Safety Administration
U.S. Department of Transportation

Washington, D.C. 20590
UCLA - SCHOOL OF ENGINEERING AND APPLIED SCIENCE

The contents of this report reflect the views of the Institute of Transportation and Traffic Engineering, University of California, Los Angeles, which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

This report presents the results of a series of experiments to deter－ mine if three drugs；marihuana，librium and dexedrine have any effect on the human performance in a divided attention laboratory task and $1 \begin{gathered}\text { the } \\ \text { UCLA }\end{gathered}$ driving simulator／．This study was a continuation of a previous NHTSA contract $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ FH－11－7305 where alcohol was shown to have an affect on both Such the laboratory task and the simulator．The drug treatments inehiomeport was eviohunted in ans were－individual experiments where mere the drug，alcohol，and their nedpertice placebos were given as treatments in a factorial design．

The results of the experiment showed the following：
1）Only one divided attention laboratory task was conducted，librium and alcohol．Librium had no effect on performance but alcohol affected performance as was reported in the earlier study．

2）In the marihuana driver simulator experiment there was no static－ ticalysignificant effect of marihuana or alcohol．
3）In the librium experiment on the driver simulator，librium showed a significant decrement at the 0.05 probability level．However the percent change in performance was $4.76 \%{ }^{\text {a }}$ On the other hand， alcohol showed no significant effect with a $26.8 \%$ change in per－ formance．

4）In the dexedrine study，statistical significance for either dexe－ drine or alcohol was marginal，ie． 0.10 probability level．

On the basis of these results it is the opinion of NHTSA that no conclusion can be made on the effect of these drugs on driver performance． The reason for the lack of significance appears to be due to the large
variation in performance scores of the subjects and group of subjects for the different experiments. This could be corrected in subsequent studies by, as the authors concluded, more carefuliscreening and selection of subjects or as a separate alternative, better control of the subjects during the time that the subject is participating in the experiment.

More studies should be conducted on these drugs using better control over the subjects.

TECHNICAL REPORT STANDARD TITLE PAGE

| 1. Report No. 2. Government Accession No. <br> UCL_A-ENG-7302  | 3. Recipiant's Catalog No. |
| :---: | :---: |
| 4. Titlo and Subtitlo <br> Effects of Drugs and Alcohol on Driver Performance | 5. Report Date May 1972 <br> 6. Parforming Organization Code |
| 7. Author(s) H.W. Case, S.F. Hulbert | 8. Parforming Organization Report No. UCLA-ENG - 7302 |
| 9. Performing Organization Name and Address Institute OI Transportation \& Traffic Engr., School of Engr. \& Applied Science, University of California, Los Angeles, California 90024 | 10. Wark Unit No. <br> 11. Contract or Grant No. FH-11-7499 |
| 12. Sponsoring Agency Name and Address <br> U.S. Department of Transportation <br> National Highway Traffic Safety Administration Washington, D.C. 20590 | 13. Type of Report and Period Covered FINAL $3 / 2 / 70-9 / 30 / 71$ <br> 14. Sponaoring Agency Code |

15. Supplementary Natea

## 16. Abstract

Reports and discusses the methodology and results of experiments in a driving simulator and soundproof chamber which tested the effects of Alcohol, Librium, Dexedrine and Marihuana on human driving performance. Although a trend was found for divided attention reaction time in the simulator as affected by marihuana, the results are statistically inconclusive. Librium also increased the reaction time in the simulator. Dexedrine DECREASED reaction time in the simulator and the combination of dexedrine with alcohol produced reaction times no different than placebo drives. Vehicle control scores were not effected except as an increase in variability. It is concluded that Marihuana and Librium require more study and Dexedrine tends to offset the effects of alcohol on reaction time.

| 17. Koy Words <br> Drugs, Alcohol, <br> Driver Performance, <br> Librium, Dexedrine, Marihuana |  | 18. Distribution Statement |  |
| :---: | :---: | :---: | :---: |
| 19. Security Classif. (of this report) none | 20. Security Clasaif. (of this pago) none | 21. No. of Pages 164 | 22. Price |

Form DOT F 1700.7 (8-69)

## FINAL REPORT

## EFFECTS OF DRUGS AND ALCOHOL ON DRIVER PERFORMANCE

Prepared for
U.S. Department of Transportation
National Highway Traffic Safety Administration
Contract No. FH-11-7499
The Effects of Drugs and Alcohol in Combination withDrugs on Driver Performance
Principal Investigator: H. W. Case, Professor Associate Director, ITTE

Co-Principal Investigators:

Authors:
R. O. Bauer, M.D. Professor
S. F. Hulbert Research Psychologist
H. A. Moskowitz Research Psychologist
H. W. Case
S. F. Hulbert
INSTITUTE OF TRANSPORTATION AND TRAFFIC ENGINEERING School of Engineering and Applied Science University of California, Los Angeles

## PREFACE

This report was prepared for the U.S. Department of Transportation, National Highway Traffic Safety Administration, under contract No. FH-ll-7499, entitled "The Effects of Drugs and Alcohol in Combination with Drugs on Driver Performance." The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the U.S. Department of Transportation, National Highway Traffic Safety Administration.

The authors acknowledge the assistance of Thomas Jelmeland in the simulator scores software development, and of Tom Collins in the application of Biomedical computer programs. Computing assistance was obtained from Health Sciences Computing Facility, University of California, Los Angeles, sponsored by N.I.H. Special Research Resources Grant RR-3.

## CONTENTS

Section Page

1. INTRODUCTION AND SUMMARY ..... 1
2. THE PROBLEM ..... 3
3. BACKGROUND ..... 7
3.1 Alcohol ..... 7
3.2 Marihuana ..... 8
3.3 Divided Attention ..... 13
3.3.1 The Hypothesis ..... 13
3.3.2 The Subsidiary Task ..... 14
3.3.3 Task Loading ..... 15
3.4 Driving Simulation Laboratory ..... 17
4. PROCEDURE ..... 19
4.1 Strategy and Approach ..... 19
4.1.1 Strategy ..... 19
4.1.2 Approach ..... 19
4.1.3 Subsidiary Task ..... 20
4.1.4 Driving Simulation Laboratory ..... 22
4.1.5 DSL Training Run ..... 23
4.1.6 Soundproof Booth ..... 23
4.2 General Experimental Procedure ..... 25
4.3 Librium and Alcohol ..... 27
4.3.1 Subject Procurement ..... 27
4.3.2 Subject Preparation ..... 28

## CONTENTS (CONT'D)

Section Page
4.3.3 Test Session Procedure ..... 29
4.4 Dexedrine and Alcohol ..... 31
4.4.1 Subject Procurement ..... 31
4.4.2 Training Session ..... 33
4.4.3 Test Session Procedure ..... 33
4.5 Marihuana and Alcohol ..... 36
4.5.1 Subject Procurement ..... 36
4.5.2 Training Session ..... 37
4.5.3 Test Session Procedure ..... 38
4.6 Supplemental Experiment ..... 41
5. RESULTS ..... 43
5.1 Soundproof Booth ..... 43
5.2 Vehicle Control ..... 43
5.3 Subsidiary Task ..... 44
5.3.1 Scoring ..... 44
5.3.2 Task Loading ..... 45
6. DISCUSSION AND CONCLUSIONS ..... 77
6.1 General ..... 77
6.2 Brain Levels, Drugs and Driving ..... 82
7. REFERENCES ..... 87
8. APPENDICES ..... 91
A. Experimental Participant Release ..... 91

## CONTENTS (CONT'D)

Section Page
B. Subject Interview Forms ..... 95
C. General Information Sheet and Treatment Data Sheet ..... 101
D. Short Drug Effects Questionnaire ..... 107
E. Long Drug Effects Questionnaire ..... 111
F. Confidential Questionnaire ..... 125
G. Vehicle Control Scores ..... 135
H. Biomedical Computer Programs ..... 157

## TABLES

No. Caption Page
1 Subsidiary Task Reaction Time, Marihuana Study, Alcohol Drink given with Placebo Smoke ..... 47
2 Subsidiary Task Reaction Time, Marihuana Study, Placebo Drink given with Marihuana Smoke ..... 48
3 Subsidiary Task Reaction Time, Marihuana Study, Marihuana Extract Drink given with Placebo Smoke ..... 49
4 Subsidiary Task BMDX63 Statistics, Marihuana Study, All Responses Including Omissions ..... 50
5 Subsidiary Task BMDX63 Statistics, Marihuana Study, All Responses Excluding Omissions ..... 51
6 Subsidiary Task BMDX63 Statistics, Marihuana Study, All Initially Correct Responses ..... 52
7 Subsidiary Task Reaction Time, Librium Study, Alcohol Drink given with Librium Pill ..... 53
8 Subsidiary Task Reaction Time, Librium Study, Alcohol Drink given with Placebo Pill ..... 54
9 Subsidiary Task Reaction Time, Librium Study, Placebo Drink given with Librium Pill ..... 55
10 Subsidiary Task BMDX63 Statistics, Librium Study, All Responses Including Omissions ..... 56
11 Subsidiary Task BMDX63 Statistics, Librium Study. All Responses Excluding Omissions ..... 57
12 Subsidiary Task BMDX63 Statistics, Librium Study. All Initially Correct Responses ..... 58
13 Subsidiary Task Reaction Time, Dexedrine Study, Alcohol Drink given with Placebo Pill ..... 59
14 Subsidiary Task Reaction Time, Dexedrine Study, Alcohol Drink given with Dexedrine Pill ..... 60
15 Subsidiary Task Reaction Time, Dexedrine Study, Placebo Drink given with Dexedrine Pill ..... 61
16 Subsidiary Task BMDX63 Statistics, Dexedrine Study, All Responses Including Omissions ..... 62

## TABLES (CONT'D)

No. Caption Page
17 Subsidiary Task BMDX63 Statistics, Dexedrine Study, All Responses Excluding Omissions ..... 63
18 Subsidiary Task BMDX63 Statistics, Dexedrine Study, All Initially Correct Responses ..... 64
19 Subsidiary Task BMDO5V Statistics, Latin Squares, Marihuana Study, All Responses Including Omissions ..... 65
20 Subsidiary Task BMDO5V Statistics, Latin Squares, Marihuana Study, All Responses Excluding Omissions ..... 65
21 Subsidiary Task BMDO5V Statistics, Latin Squares, Marihuana Study, All Initially Correct Responses ..... 66
22 Subsidiary Task BMDO5V Statistics, Latin Squares, Librium Study, All Responses Including Omissions ..... 66
23 Subsidiary Task BMDO5V Statistics, Latin Squares, Librium Study, All Responses Excluding Omissions ..... 67
24 Subsidiary Task BMDO5V Statistics, Latin Squares, Librium Study, All Initially Correct Responses ..... 67
25 Subsidiary Task BMDO5V Statistics, Latin Squares, Dexedrine Study. All Responses Including Omissions ..... 68
26 Subsidiary Task BMDO5V Statistics, Latin Squares Dexedrine Study, All Responses Excluding Omissions ..... 68
27. Subsidiary Task BMDO5V Statistics, Latin Squares Dexedrine Study, All Initially Correct Responses ..... 69
28 Subsidiary Task Reaction Time, Marihuana Study, Subjects Versus Treatments Across Subjects ..... 70
29 Subsidiary Task Reaction Time, Marihuana Study, Events Versus Treatments Across Subjects ..... 71
30 Subsidiary Task Reaction Time, Marihuana Study, Subjects Versus Runs Across Events ..... 72
31 Sound Proof Booth Statistics, Librium ..... 73
No. Caption Page
32 Soundproof Booth Statistics, Librium, Concentrated Attention, Percent Correct ..... 74
33 Soundproof Booth Statistics, Librium, Divided Attention, Percent Correct ..... 75
34 Soundproof Booth Statistics, Librium, Divided Attention, Interactions, Percent Correct ..... 76

This study is only part of a larger program of research into the ways that various drugs (commonly used) affect driving safety. Therefore, it is based on the results of earlier projects that showed the effects of alcohol to be primarily on human attention, not on the vehicle control skills such as steering and speed control, except to increase the variability of these scores in the UCLA Driving Simulator.

For this reason, the present report deals with two types of laboratory measures: one has to do with two auditory tasks simultaneously presented; the other is comprised of two visual tasks (one of which is simulator driving) simultaneously presented. Because these research tasks are conducted in separate laboratories, they actually constitute two studies complete unto themselves.

Four different drugs (and drug-alcohol combinations) were studied in these two separate laboratories, making in all eight sub-studies, each related to the overall hypotheses and research strategy of the project. The report therefore deals with the overall concepts, describes each sub-study, then discusses the total implications of the results.

Evidence was found for an effect on driving behavior of marihuana. Although a trend was found for the visual subsidiary task as affected by marihuana, the results are statistically inconclusive. No effect was found on vehicle control scores and no tests were conducted on the auditory tests of attention.

Librium was shown to increase reaction time to the visual subsidiary task in the driving simulator laboratory, and Librium with alcohol increased reaction time even further. However, no Librium effect was found in the auditory
test of divided attention nor were there any marked changes in vehicle control scores under Librium even when combined with alcohol.

Dexedrine was found to decrease reaction time to the visual subsidiary task and the combination of Dexedrine with alcohol produced reaction times equal to the sober (placebo) drive'sessions. Due to equipment failure, no data were analyzed for the auditory tests of divided attention under Dexedrine or marihuana.

These results support the following conclusions:
a. Marihuana affects visual divided attention while driving, but more data are needed to determine these effects more clearly.
b. Librium affects visual divided attention while driving, but does not affect auditory divided attention. Alcohol and Librium together appear to increase reaction time more than either alone. These results need further study.
c. Dexedrine does decrease reaction time while driving and when combined with alcohol does offset the alcohol effect on reaction time while driving. However, there is indication of some disruption of the normal pattern of divided attention reaction time relative to task loading.

## 2. THE PROBLEM

The U.S. population is increasingly a drug and medication taking society and also an automobile driving society. The combination of these two practices is producing an increase of hazardous drivers on the highways. This problem is the subject of the present study.

A nationwide survey done in 1957 (1) indicated that the purchase of drugs and medicines outside of the hospital amounted to 1.5 billion dollars, or accounted for $15 \%$ of the total amount spent for personal health services. In that same year, the American Institute of Public Opinion found that $7 \%$ of the surveyed population admitted to using tranquilizers. A decade later, a survey conducted by the Social Research Group of George Washington University(2) indicated that $26 \%$ of the surveyed population admitted to using tranquilizers. This represents almost four times the usage rate of the earlier survey.

Self-medication practices have increased considerably (3), resulting partly from the increased sophistication that people have about the substances that are available for purchase over the counter.

By far the most widely known drug related to traffic safety is alcohol. This problem dates back to antiquity where early Roman history relates a ban on drunken chariot drivers. This drug was the subject of previous studies in this UCLA series (4) sponsored by the U.S. Department of Transportation.

A frequently overlooked, yet important, factor is the synergistic effect of alcohol with many other drugs in which one potentiates the effect of the other, so that what might be a relatively safe amount of either alone, when combined in an unplanned way could result in adverse effects on driving as well as other behavior (5, 6, 7).

It is characteristic of other drugs, as distinguished from alcohol, that most of those with adverse effects produce these with relatively small doses. Furthermore, most are not easily or conveniently detected in the living subject, and many of them are slowly metabolized, resulting in long-term effects of relatively small doses.

While many types of drugs are possible offenders in creating impaired driving capability by themselves or in combination, this study will deal with a commonly used tranquilizer (Librium), a commonly used stimulant (Dexedrine), and a commonly used narcotic (marihuana). Of the first of these, Buttiglieri, Case et al., in a textbook chapter (8), state:
"The series of benzodiazapine compounds is continuing to grow. The two best known derivatives are chlordiazepoxide (Librium) and diazepam (Valium). They both have mild sedative effects and are used mainly in treatment of anxiety. There is, in addition, a muscle relaxant effect, especially with valium. There is considerable interest at present in their use for the treatment of alcoholism, especially in withdrawal symptoms and acute intoxication. Persons taking these medications must be concerned over possible drowsiness, fainting, and dizziness: There may be some special hazard in their effect on driving; but, as with so many of the drugs, this question requires further investigation (9).

The second drug (Dexedrine) is discussed as follows by these authors:
"Amphetamine and related compounds have become one of the most popular groups of self-administered drugs today. Amphetamine and dextroamphetamine (Benzedrine, Dexedrine) are potent central nervous system stimulants, the effect depending on the dose, the personality, and the current mental state. Usual effects are alertness,
wakefulness, elevated mood, improvement in simple task performance, and decreased sense of fatigue. These have been used illicitly for increasing the performance of athletes and race horses but whatever gain is achieved is only temporary and must be repaid out of the total economy of the organism. Prolonged use or large doses are followed very often by depression and fatigue. Amphetamine, methamphetamine, and similar compounds have been widely used as appetite suppressants and represent a serious health hazard. If used at all, they should be under strict medical supervision (10). These drugs are becoming an integral part of the drug culture of the younger generation of today where they are, among other terms, referred to as 'uppers' (11). Because of the widespread use, both acute and chronic intoxication is seen frequently. The effects commonly include restlessness, dizziness, tremor, hyperactive reflexes, overtalkativeness, irritability, and sleeplessness. Anxiety, confusion, panic, and even hallucinations may occur since psychotic reaction often of a paranoid type can develop with the large doses currently in use among individuals habituated to the drug (12)."

The last of the three (marihuana) is classed as an hallucinogen and is discussed by Buttiglieri, Case et al. in their chapter as follows:
"Marihuana is a mild hallucinogen which, however, is classified legally as a narcotic (13). We are in a rather peculiar position today of living in a society where the use of these drugs has become extremely widespread particularly in the youthful age groups, but where objective knowledge is meager and where research is severely limited by legal restrictions."

Marihuana is also known as Cannabis and is described as such by these authors:
"Cannabis is a very ancient drug obtained from the common hemp. In the Middle East and North Africa, the resinous extract is called 'hashish.' In India the material obtained from different parts of the plant are called 'bhang' and 'ganja.' In the United States the term marihuana is used for any part of the plant which is used to produce psychic change (14). The physiological effects are minimal in terms of effect on driving, although the subjective effect may vary from a dreamy reverie to various changes in perception, including that for time and space, to the extreme of vivid hallucinations. The response is very much determined by the personality of the user and the immediate situation; but there may be marked alterations of mood which may vary from extreme well-being and joyousness to hilarity and occasionally depression."

The driving and traffic safety implications of these responses seem obvious but just as with alcohol, even though effects seem important it has not been possible to clearly isolate and demonstrate them in a driving situation.

This is partly due to the oversimplified attempts that have been made to measure the driving task. Brake pedal reaction time is not greatly affected by the moderate doses we suspect are killing highway users. Steering ability also is not altered unless it is artifically increased in difficulty so as to place it far outside the range of driving task difficulty.

Driving judgment and multiple contingency assessment are much more difficult to assess and are the focus of this study, as it attempts to quantify those elusive qualities of highway driving and determine the effects of three drugs in comparison to and in combination with alcohol, the known killer.

The history of studies on alcohol and driving performance was described in an earlier report (15) of this total UCLA research program. A series of studies by Borkenstein (16) has clearly established that blood alcohol levels of $0.10 \%$ and $0.15 \%$ are associated with "an astonishing" 6- and 25-fold increase in morbidity, respectively. Zylman (17) has critically reviewed these studies and performed further analysis of the data.

Drivers with BAL's of $0.10 \%$ will not usually show any marked outward evidence of impaired driving capability. This was clearly revealed in initial research at UCLA ITTE where drivers were intoxicated and then had their performance measured in the UCLA Driving Simulator (18). It was not until a secondary visual task was added that the evidence of alcohol effects became clear. The underlying concept put forth by Moskowitz (15) is that driving is a task that requires a division of attention. In other words, the driver's single track mental system is used by the alert driver to sample the driving environment both outside and inside the vehicle and look for cues that will enable him to correctly predict and anticipate what lies ahead. Eye movement studies at Ohio State (19, 20) support this contention and also show marked changes under alcohol and fatigue.

The divided attention concept of why alcohol increases accident likelihood explains why simple reaction time may not be affected or may even be improved. The alcohol apparently serves to narrow the field of attention which can actually improve the ability to respond to a simple and expected change in the environment. The UCLA
work is showing that this holds true for auditory stimuli as well as for visual (21), which is evidence that the behavioral impairment takes place in the central nervous system and in particular reduces the driver's information handling capability. This concept helps to explain why visual acuity is not affected by BAL's of 0.10\%. When the driving task is considered in terms of the impairment in mental processing and environment sampling rate decrease caused by alcohol, it is readily understood how drunk drivers can fail to perform safely. They can fail by completely "not seeing" obstacles or other vehicles because their visual scanning rate is simply too slow. They can, and do, fluctuate speed greatly and erratically because their rate of speed monitoring is too slow to detect speed changes as efficiently as normal. Their steering performance may not vary greatly but it can demand nearly all of their limited attention whereas normally (sober) they need devote only a fraction of their attention to steering and have a great deal of attention available to devote to the detection and processing of other cues from the environment.

### 3.2 Marihuana

The evidence on the effects of smoking marihuana is being accumulated in a myriad of studies that are in various states of completion. A landmark study (22) by N.E. Zinberg and A.T. Weil at Boston University School of Medicine was so important to the public that an explanatory article was published 11 May 1969 in the New York Times Magazine (23) where the authors told of their approach to the study of marihuana effects. They set forth procedures and research policies that were aimed at the
ordinary or average user and administered the drug in the way that users take it, namely smoking in deep inhalations that are held for approximately 20 seconds, then exhaled. Their conclusions indicated that an l8-mg cigarette caused "a moderate increase in heart rate, but not enough to make subjects conscious of a rapid pulse, and it reddened whites of eyes. It had no effect on pupil size, blood sugar, or respiratory rate. Possibly the drug has a few other effects on the body..." They conclude that the lack of major physical effects points to "the uniqueness of hemp among psychoactive drugs" and makes it unlikely that marihuana has any serious detrimental effects in either short-term or long-term usage. A recently completed survey of world-wide reports led its author W.H. McGlothlin to similar conclusions.

The Weil et al. report also studies psychological reactions and concluded that "no one has shown any specific way in which a person, high on marihuana, is different from one who is not." They found no evidence of difference on an attention test (Continuous Performance Test) and a slight improvement on the Digit Symbol Substitution Test "even though they started out from good baseline scores." Apparently even the users themselves were surprised at how well they could perform when under the influence or "stoned."

Zinberg and Weil go on to state, "Apparently, getting high on marihuana is a much more subtle experience than getting high on alcohol... This hypothesis is consistent with the evidence that marihuana seems to affect little in the brain besides the highest center of thought, memory and perception. It has no general stimulating or depressive reaction on the nervous system (hence the absence of neurological as opposed to psychological changes during a high), no influence on lower centers like those controlling the mechanical aspects of speech and coordi-
nation (hence no slurred words or staggering gait). As a result it seems possible to ignore the effects of marihuana on consciousness, to adapt to them, and to control. them to a significant degree... Users appear to be able to compensate 100 percent for the nonspecific adverse effects of ordinary doses of marihuana on ordinary psychological performance (including driving), according to the findings of a soon-to-be-published study..."

The study to which they refer was done by Crancer et al. (24) using a driver training simulator with special films of driving situations. Hulbert (one of the principal investigators of the present study) personally visited the Crancer study after it was completed. The findings of the important studies by Weil et al. and Crancer et al. are included in the research approach for the present study described in a later part of this report. Crancer compared the driving performance of 36 chronic marihuana users under three conditions:
a. No drug.
b. Marihuana smoked to a "normal social high" using 1.7 gm marihuana containing $1.3 \% \mathrm{THC}$.
c. Alcohol at a predicted blood level of $0.10 \%$ which is the legally recognized level of presumptive intoxication in many states.

Crancer did not store his marihuana in a refrigerated environment and may have thereby lost some potency in the drug. Driving performance was evaluated in a simulator with an observer placed behind the driver recording driver reactions on a checklist at pre-selected points in the movie. Speedometer, steering, braking, accelerator and signal errors were then totalled.

The total scores for subjects experiencing a normal social marihuana high did not differ significantly from their performance under control conditions. A sig-
nificant difference was found only in the number of speedometer errors. Since the speed of the movie is not under the subject's control, speedometer errors are related solely to the time spent monitoring the speedometer and in a previous study were not correlated with actual driving performance. In contrast these subjects, when intoxicated with alcohol, scored significantly greater errors in all categories when compared with their pre-drug scores. In addition, when retested, four chronic users showed no change in performance smoking three times as much marihuana.

Crancer's study suggests that persons can drive safely while high on marihuana. A closer look at Crancer's research, however, reveals that his equipment is relatively unsophisticated, and his subjects had no control over their simulated drive. Thus, for example, at a specific point in the movie, the car turned left whether or not the subject turned the steering wheel to the left. If he did not, a steering error was checked. Similarly, he had no control of the speed. Thus, the subject's illusion of actually driving the car was rapidly dispelled. In addition, although crancer aimed for a blood alcohol level of $0.10 \%$, careful calculation shows that the amount of alcohol given to each subject would have produced a blood alcohol level of $0.18 \%$ and a state of severe intoxication. In view of these deficiencies in equipment and experimental design, Crancer's findings, which imply that driving performance is not impaired by marihuana, must be considered suggestive rather than conclusive.
W.H. McGlothlin, in a recent report (25), states:
"In summary, of the psycho-motor responses measured, those most strongly affected by Cannabis are ataxia and hand steadiness. With regard to other measures, the percentage impairment is largest for naive users, large
doses, and complex tasks.
Effect on Driving. The widespread use of marijuana has focused attention on its possible effects on driving skills. Survey results have indicated that marijuana users receive more traffic tickets than do nonusers $(26,27)$. Similar results have been derived from the traffic records of persons arrested for marijuana use, although the accident rate was not above average (28). Of course, these findings are simply correlates of marijuana use and do not indicate a causal relationship. The user's own assessment of the effect of marijuana intoxication on driving performance is apparently related to age-related involvement in the current marijuana controversy -- $17 \%$ of a sample of student and other young marijuana users felt their driving was impaired by the drug (29) in comparison to $72 \%$ of a sample who began using marijuana some 20 years ago (30).
"One study compared the effects of alcohol (1.2g/ kg body weight) and smoked marijuana ( 22 mg THC ) on driving simulator performance (24). The alcohol dose significantly impaired simulator scores while the marijuana treatment produced minimal changes. Moskowitz et al. have examined the effect of marijuana on attentional aspects of driving, i.e., the ability to attend to peripheral cues while carrying out central tracking tasks (31). Smoked marijuana containing 15 mg THC significantly impaired this function in laboratory tests of both the visual and auditory modalities. The extent of decrement was approximately equivalent to that produced by a blood alcohol level of about $0.07 \%$, i.e., the consumption of about 5 ounces of 80 proof liquor."

Recent unpublished results of Moskowitz's work at UCLA indicates that impairment due to marihuana is different in nature from that due to alcohol. Peripheral
attention and vision are affected differently and perhaps more seriously.

### 3.3 Divided Attention

### 3.3.1 The Hypothesis

Previous studies at UCLA $(15,18)$ have produced a rationale that considers driving as a divided-attention task. These studies have shown that divided-attention capability is reduced by alcohol both in an auditory task and in the simulated driving task. Studies done by others also indicate that it is the lack of ability to maintain simultaneously two aspects of driving that reveals performance decrement. For example, maintaining constant speed and steering simultaneously is affected by tranquilizing drugs. Kaluger (19) and Belt (20) at Ohio State also found similar results with alcohol and with fatigue. So there is some evidence that the dual aspects of driving are negatively affected by a variety of factors. Then the argument follows that if divided attention has been shown to be affected by alcohol, and alcohol has been shown to relate to increased likelihood of being involved in injury-producing accidents, then what needs to be established is some relationship between the UCLA laboratory tests of divided attention and those aspects of the driving task that might be causing accidents. This approach to the problem led to the creation of a subsidiary task in the Driving Simulation Laboratory.

### 3.3.2 The Subsidiary Task

The creation of this subsidiary task is thoroughly discussed in a recent ITTE report (18). It is described in the Procedure section (4.1.3) of this report, and therefore needs only be briefly mentioned here. The conclusions of that report are that while alcohol at the $0.10 \%$ level does not markedly affect driving scores in the Simulator, except to increase their variability (which is important), the addition of this subsidiary task did in fact as reported in (18) clearly show sensitivity to $0.10 \%$ BAL.

The subsidiary task as it was developed has two goals. First, it provides a task with a definite onset. In other words, the stimulus comes on at a very definite time: it is a light which comes on and to which the driver must react. This is in contrast to the more realistic traffic situations which occur in the motion picture dríving scene, which do not have a very clear or definite beginning because they develop over time and space just as they do in actual driving. Therefore one goal of this subsidiary task is to produce a stimulus with a very clear and definite onset. Another goal of the subsidiary task is to produce a signal which, while it interrupts and becomes parallel to the driving, is not so strong a stimulus that it becomes a primary task. This is what the research work reported in (18) describes. Several subsidiary tasks and variations of subsidiary tasks were investigated before settling on this one.

The data that establish the fact that the secondary or subsidiary task is indeed a true secondary task have been developed in the following way. Since the onset of the secondary task is completely controllable, it was placed at certain locations along the 3l-mile driving scene, at four different types of locations determined to have four different levels of task loading or task involvement.

Those sections of the 31 miles where there was no other traffic, and where the road was straight and level, constituted the lowest level of performance required from the driver. It left a maximum amount of what Broadbent and his fellow-researchers have called "spare mental capacity." It thus became the lowest of the four levels of task involvement.

The second level was chosen to represent those sections of the highway where there were curves or highway signs or intersections, or a straight level road with on-coming vehicles, but nothing very important happening to demand a high level of the driver's attention.

The next highest or third level of task loading involves combinations of other vehicles, roadway signs, curves, crossroads, intersections, with those factors occurring not alone but in combination. This represents a somewhat higher level of task loading, because there are several simultaneously occurring things for the driver to attend to.

The fourth or highest level were those situations wherein there were not only all of the factors involved in the third level, but some degree of threat or some unusual situation such as a car coming from a side road or some of the staged incidents that were created, such
as a large box tumbling off an approaching pickup truck or a swerving truck that looks as though it might be coming across the centerline of the road head-on at the driver. Many experiences of the UCLA ITTE research staff with the 31 miles of driving scene in the Driving Simulator led to the preliminary selection of a number of roadway areas which were candidates for inclusion in the final selection of sections of roadway to be representative of each of the four levels of task involvement described above.

Three independent ratings of these candidate sections were made and compared. Only those sections of roadway on which there was complete agreement among the independent raters were included in the final selection.

Since these clearcut sections of types of traffic situations occurred at specific locations along the road, there was a need to insert additional occurrences of the subsidiary task. This was to provide a mixed assignment of the occurrence, in time, of the subsidiary task and therefore eliminate any way in which the drivers could begin to interpret or associate the occurrence of the subsidiary task with any particular type of roadway scene. In individual test sessions there was the usual mixing of films, i.e. of the order in which various sections of the roadway scene appeared; and some scenes appear in only one set of films. This is described more fully in Section 4. - Procedure.

### 3.4 Driving Simulation Laboratory

The ITTE Driving Simulation Laboratory (DSL) has been described in a previous report in this series (18), and was used in exactly the same way in the present study in order to permit comparisons among results of all studies in this series of drug studies.

### 4.1 Strategy and Approach

### 4.1.1 Strategy

The research strategy of this study was to determine the effect of the selected drugs on the driving task by using alcohol as a "comparison" drug. This strategy was chosen in light of the fact that other than alcohol, the drugs selected for the experiment do not have a history of field study data. Therefore, the experiment was designed to use the already well established research as well as field evidence relating alcohol to traffic accident involvement. The effects of the "no-data" drugs were compared to the effects of alcohol generated under the same experimental conditions. Then, by using the known relationship of alcohol to traffic accidents, the relationships of the other drugs to accident involvement could be determined.

### 4.1.2 Approach

Following the logic of the research strategy, the research approach developed for this project had three major facets. The first facet was related to the primary overall goal of the project, which was to establish whatever relationship possible between the various drugs chosen and the driving task. This overall approach then was to relate experimental alcohol-induced human performance decrement data to existing highway traffic field data which showed increased blood alcohol level associated with increased potential for involvement in injury-producing traffic accidents.

The next facet in the approach was to cope with the fact that as stated earlier there is no traffic accident data on the other drugs of interest (Librium, Dexedrine, marihuana) which can relate them directly to accident involvement. Therefore, it was planned to determine whether or not there were measurable effects of these drugs in the divided-attention laboratory, and then to see if those effects were also revealed in reaction-time scores on the subsidiary task in the Driving Simulation Laboratory. To the extent that these effects were similar to alcohol it would be possible to infer that there was also an effect similar to that of alcohol in the actual driving situation.

In addition to using alcohol as a comparison drug in the manner described above, the third facet of the approach endeavored to obtain data on the combination effect of these various drugs with alcohol. This is an additional and somewhat separate evaluation. The reason for this additional effort is that it is clear from field surveys that it is needed.

### 4.1.3 Subsidiary Task

All drivers were tested on this task which consists of the rapid discrimination of one of four light conditions. There are two small light boxes, with two colored bulbs in each box (amber and green). The two boxes are mounted above the driver's head near the junction of the roof line and the front window of the DSL vehicle. They are separated from each other by 12 inches, and are spaced equally on each side of the subject's line of sight. They are within and close to the edges of his peripheral vision. On each side of the steering column is a response
lever. Each lever can be pushed upward or pulled downward. The two levers, each with two positions, make possible four distinct responses by means of which the subject can turn off any one of the four lights. The task is as follows: at 77 points during each drive, one of the four lights goes on, and remains on until either turned off by the subject through appropriate lever actuation, or until 10 seconds has passed without the driver moving the appropriate lever, at which point the light automatically goes out.

The points along the drive at which the lights are actuated are the same for all subjects, independent of differences in their behavior in handing the car, such as differing speeds. This is accomplished by placing a photoelectric cell in the film gate of the projector. The photo cell sends an impulse to a paper tape drive which advances for each film frame and the paper tape drive, in turn, controls the four lights. An electric counter and printer are used to record the points at which the lights go on. In essence, the system moves in synchrony with the film projector and controls the stimulus presentation. Two equivalent test films were created in this fashion.

Prior to running subjects in the Simulator, three independent observers rated the 77 points, at which one of the four lights went on, for each of the films, as to their introspective view of the attentional demands of the driving task. Their observations were averaged, and placed on a four-point scale, ranging from very little attentional demand,1 to a very great attentional demand,.4.

### 4.1.4 Driving Simulation Laboratory

After a 10-minute training period with the subsidiary task, all subjects were instructed in the proper operation of the driving simulator. As described in an earlier report (18), the Driving Simulation Laboratory is comprised of an actual automobile placed in front of an extremely wide-angle motion picture projection screen, curved to fill approximately $160^{\circ}$ of the forward visual angle of the subject's field of view. A rear screen shows a matching scene that is viewed in the rear view mirror. The rear wheels of the vehicle rest upon the rollers of a chassis dynomometer and are free to rotate. The subject is instructed in the operation of the vehicle controls, and then is told to start the car and drive at his own desired rate within a range of 20 to 70 miles per hour. His apparent driving speed, which is related to the speed of the projectors, is thus determined by the driver as he controls the speed of the engine of the car. A single $35-\mathrm{mm}$, 160-degree projector creates the front scene and a synchronized $16-\mathrm{mm}$ projector shows the rearward scene. The front wheels are free to turn and these determine the azimuth rotation movement of the front projection system, so that within a small range (three feet of lateral movement) a realistic simulation of the results of turning the steering wheel is obtained. The significant point is that the subject sits in a standard automobile and faces a scene that gives him the illusion that the vehicle is responding to his manipulation of its controls, thus creating overall an unusually realistic simulation of the driving situation.

All the while he is "driving," of course, the subject's performance is being closely monitored, and continuous records of his physical actions and physiologi-
cal condition are being generated for subsequent analysis. These measured items are described in detail in the Results section, 5.

### 4.1.5 DSL Training Run

After the subject had learned the subsidiary task and had been instructed in operating the simulator vehicle, he received a 20-minute training session in which he "drove" the vehicle along a winding, two-lane mountain road while at the same time responding to the lights in the subsidiary task. This drive served to eliminate those subjects with unusual susceptibility to motion sickness as well as to familiarize them further with the DSL vehicle. Accepted subjects were then programmed for four test sessions, spaced one week apart, at the same time of day and same day of the week in order to control for any factors correlated with diurnal or weekly cycles.

Following completion of the DSL training run, the Librium and Dexedrine subjects were taken into another testing area which contained a soundproof booth (SPB).

### 4.1.6 Soundproof Booth

The apparatus was designed to measure the subject's information-processing capacity in both a divided-attention and concentrated-attention or vigilance situation utilizing auditory stimuli. The subject was seated in a comfortably upholstered chair located in a large sound-isolation chamber. A pair of high fidelity earphones were placed over the subject's ears. Each earphone was connected separately to one channel of a two-channel audio tape recorder. The
tape recorder and the experimenters were in another room, and communication with the subject was by intercom.

All instructions and the attention tasks were pre-recorded on tape. On one channel of the tape was a series of bursts of random noise three seconds in duration and separated by seven-second intertrial silent intervals. Half of the noise bursts were chosen at random to contain a 1000-cycle/second tone of one-second duration recorded at an amplitude of 15 Db below the level of the noise burst. The position of the one-second tone within the three-second noise burst was randomly chosen. To prevent clicks, both the noise bursts and the tones were started and stopped gradually, using 50-millisecond envelopes of changing amplitudes.

On the second channel, a series of lists of six randomly-chosen digits was recorded. The six numbers occurred at a rate of one every half-second. Between each list was an intertrial interval of seven seconds. The three seconds required for each list began simultaneously with the three-second noise burst on the first channel.

During the experiment, channel one containing the noise burst and occasionally the tone was presented to the left ear, and the second channel containing the numbers was presented to the right ear.

Several tapes were prepared for the training and experimental sessions. Each tape contained two sets of 20 trials for practice purposes and two sets of 50 trials for the test conditions, for a total of 140 trials on each tape. Each tape began with instructions regarding the vigilance or concentrated-attention task. This task was to report verbally the absence or presence of the tone in each noise burst while ignoring the presence of the numbers. The instructions were followed by 20 practice
trials, with the correct response recorded on the tape after a delay for the subject's report. Then 50 test trials of the vigilance task were presented, with no information feedback on performance. The tape then continued with instructions for the divided-attention task. This task was first to repeat back the six numbers in correct order and then to report the presence or absence of a tone in the noise burst. Again 20 practice trials were presented, with feedback of results, followed by 50 test trials without feedback.

The physical stimuli were the same on all trials on both tasks -- six digits in one ear and a noise burst with occasionally a tone in the other. The only difference between tasks was the specification regarding what the subject had to report about these stimuli.

Following completion of the SPB training session, the subject was excused and reminded of his appointment the following week for the first of his four test sessions.

### 4.2 General Experimental Procedure

The procedures followed in conducting the three sub-experiments (Librium/alcohol, Dexedrine/alcohol and marihuana/alcohol) had much in common. However, there were enough procedural differences of significance to warrant separate discussion of each. A common element of all three experiments was the use of the UCLA Driving Simulator to generate driving performance scores. However, the soundproof chamber was used only for the Librium and Dexedrine. The subjects were recruited through advertisements and were paid for their services.

Balanced Latin square designs were used for all three drugs in order to counterbalance order effects due
to repeated runs on the Driving Simulator and in the soundproof booth. Appropriate analyses of variance statistical tests were performed to evaluate significance of subsidiary task and soundproof booth data. For the vehicle control scores, t-tests and analyses of variance were performed. Finally, all subjects were initially subjected to a screening procedure to eliminate those who would not be appropriate candidates for the study. Details of these procedures for each drug are given in the following sections.

Eight drivers were included in the Librium study to complete two replications of the $4 \times 4$ Latin square design:

|  | Run 1 | Run 2 | Run 3 | Run 4 |
| :--- | :--- | :--- | :--- | :--- |
| Alcohol |  |  |  |  |
| Placebo |  |  |  |  |
| Librium |  |  |  |  |
| Librium and <br> Alcohol |  |  |  |  |

Sixteen drivers included in the Dexedrine study completed four replications of the $4 \times 4$ Latin square:

|  | Run 1 | Run 2 | Run 3 | Run 4 |
| :--- | :--- | :--- | :--- | :--- |
| Alcohol |  |  |  |  |
| Placebo and <br> Dexedrine |  |  |  |  |
| Dexedrine and <br> Alcohol |  |  |  |  |

Twelve drivers were included in the marihuana study to complete three replications of the $4 \times 4$ Latin
square:

|  | Run 1 | Run 2 | Run 3 | Run 4 |
| :--- | :--- | :--- | :--- | :--- |
| Smoked marihua- <br> na and liquid <br> placebo |  |  |  |  |
| Smoked placebo <br> and liquid mari- <br> huana |  |  |  |  |
| Smoked placebo <br> and alcohol |  |  |  |  |
| Smoked placebo <br> and liquid <br> placebo |  |  |  |  |

Later a supplemental test session was conducted using some of the marihuana subjects who were given both smoked marihuana and liquid marihuana.
4.3 Librium and Alcohol
4.3.1 Subject Procurement

Notices were placed on bulletin boards in UCLA campus buildings asking for volunteer subjects to participate in a research study. The notices stated that only males, 21 and over, with valid California driver's licenses, need apply, and that subjects would be paid $\$ 50.00$ for completing the study.

When potential subjects called in response to the notice, they were asked the following questions regarding their medical history:
a. Do you have high blood pressure?
b. Do you have pressure in your eyes?
C. Do you have a thyroid condition?
d. Have you ever had glaucoma?
e. Are you allergic to any drugs?
f. Do you have diabetes?

A "Yes" answer to any of these questions disqualified the applicant. Of the 32 applicants responding to the ad, 19 qualified for the study. They were told that the study necessitated taking a mild tranquilizer, and that alcohol would be consumed during the course of the study. They were also told that the entire series of tests would take from 20 to 25 hours.

Of the 19 qualified applicants, 10 subjects were subsequently dropped: two were excused because they did not want to take drugs; one quit after the first week because he felt he was being "slowed down" too much by the drug (he was on placebo); two quit due to nausea with emesis on their first alcohol run; two were excused due to motion sickness; one was dropped due to lack of cooperation; one failed to return to complete the experiment: and one was dropped from the analysis because he had been re-run too many times.

Thus, a total of nine subjects completed the full experiment; all were students, with an age range of 21 to 28 years and a mean age of 23.1 years.
4.3.2 Subject Preparation

Each subject was involved in the experiment for five weeks. Each week the subject was given a week's supply of tablets (either $10-\mathrm{mg}$ Librium capsules or an identical-appearing placebo). These were in a bottle labelled with the subject's name and instructions to
take one tablet three times daily (morning, noon and afternoon). The label also requested that the subject return the bottle to the experiment office. Each week when the subject returned he was given a bottle of tablets for the following week. As a check, on several occasions, subjects were given an extra tablet intentionally; in all cases, the extra tablet was called to the attention of the experimenter by the subject at the end of the week.

The subject was scheduled for testing at the same time and same day of the week for five consecutive weeks. At the time of his first session, which was a training run, the subject was asked to sign an "Experimental Participant Release" similar to that shown in Appendix A.

### 4.3.3 Test Session Procedure

For each of the four test sessions, the subjects were instructed not to eat for four hours, and not to consume alcoholic beverages for 12 hours, prior to coming in. Each subject, of course, had been taking his pills (either placebo or Librium) regularly for the week preceding each test session. The prohibitions on food and beverage intake were to insure rapid absorption of the alcohol and to help obtain more uniform absorption rates among the subjects. Compliance was noted on a Treatment Data Sheet as shown in Appendix $C$.

There were four experimental conditions:
a. Placebo/no alcohol
b. Placebo/alcohol
c. Librium/no alcohol
d. Librium/alcohol

All subjects were exposed to all four of these conditions, with the order in which they were given randomly assigned to each subject.

Alcohol dosage was 1 oz. of 80 -proof Vodka per 25 lb . of body weight, equivalent to 0.828 gm of alcohol per kg of body weight. For an alcohol session, the subject received an appropriate amount of alcohol mixed in an equal amount of pure orange juice, with one ice cube. For a no-alcohol session, the subject received orange juice to equal the total volume of liquid in the alcohol drink, plus one ice cube.

All drinks were administered in the "Treatment Room," a pleasantly-appointed waiting room adjacent to the DSL. The drinks were given 50 minutes prior to testing in the DSL: the subject was given 20 minutes to finish his drink, then remained in the Treatment Room for 30 minutes, reading and/or listening to music. Following this, the subject's blood alcohol level (BAL) was measured using a Breathalyzer, the respiration belt was attached to his chest, and he was immediately brought into the DSL for the test run, except in the case of one subject, who was taken to the SPB first, then to the DSL following the booster drink described in the following paragraph. A registered nurse was in attendance at all times to administer the treatment and to make the physiological measurements.

In the DSL, the subject drove for 40 minutes to one hour, depending on his choice of speed, viewing a composite film of mountain, freeway and city street driving randomly selected from one of the two equivalent films. The subject was then taken back to the Treatment Room for another BAL measurement, and then a "booster" of 1 oz . of 80 -proof Vodka mixed with $1 \mathrm{oz}$. . of orange juice (if he was in an alcohol session) or 2 oz . of orange juice (if he was in a no-alcohol session). In the event the subject was experiencing nausea, the booster was not given.

The subject was then taken to the room housing the soundproof booth (SPB), where he completed the tests described earlier, using a set of taped stimuli that were different from those he had experienced in the training session.

Following completion of testing in the SPB, each subject was taken back to the Treatment Room, where another BAL measurement was taken. The subject was then given food to eat (sandwiches and drinks of his choice). Following this, he was released if he had had a no-alcohol session, or kept in the Treatment Room until his BAL decreased to $0.03 \%$ if he had had an alcohol session, and then released. He was paid his $\$ 50.00$ at the completion of his last test session.
4.4 Dexedrine and Alcohol

### 4.4.1 Subject Procurement

An advertisement was placed in the UCLA Placement Center for male students to participate in a driving simulation experiment for $\$ 2.50 /$ hour. When applicants called, they were informed that subjects had to be 21 years of age or older, with valid driver's license for any state. Also, if they had ever been in the DSL before, they were disqualified. Applicants were further informed that they would be required to take a one-hour interview, and that the total time involved in the experiment would be approximately 20 to 25 hours. Following this, they were scheduled for an interview.

At the appointed time, the applicant was given a personal interview for about 10 minutes to explore the
applicant's medical history, experience with drugs, alcohol and so on. The interview questions are given in Appendix B. At the time of the interview, the subject was told that he would have to be available for 4 to 5 hours on one day a week for 5 weeks, and that he would be paid at the end of the 5 weeks. A General Information Sheet (Appendix C) was also filled out for the subject.

Following the interview, the subject was administered an MMPI in order to weed out those individuals with character disorders. Upon completion of the MMPI, the subject was told he would be contacted in a few days, and then excused.

The MMPI results were scored, profiled and interpreted. According to the pattern of their responses, applicants were placed into three categories: "Good," "Questionable," and "Do Not Use." The interview forms for the applicants with "Good" MMPI's were then evaluated, and if a subject had some experience with alcohol and was not a drug abuser he was called and scheduled for a training run.

Forty-two student applicants were interviewed; of these, 15 subjects qualified for the study and were trained. Of these, 10 completed the study. The other five were lost due to nausea or failure to return. An additional group of subjects was obtained with the cooperation of the Long Beach, California, Naval Hospital, which made available Navy corpsmen for the study. Ten corpsmen were trained, six of whom completed the study. The other four were lost due to nausea or inability to meet the schedule. All were males, over 21, and licensed drivers. No interview or MMPI was adminis-tered to the corpsmen.

Thus a total of 16 subjects completed the Dexedrine/alcohol experiment.

### 4.4.2 Training Session

At the time of the first scheduled session following the interview session, the subject read and signed a consent and release form (Appendix A). Then he was weighed and his blood pressure taken. If his diastolic pressure was over 85, he was disqualified. All this was done in the Treatment Room.

The subject then was fitted with the respiration belt, entered the DSL and was given a 10 -minute training session on the subsidiary task, followed by a 20-minute training in operating the DSL vehicle.

If the subject had no adverse reaction to the DSL, he was taken to the soundproof booth and given a 40-minute training session there. Following this, the subject returned to the Treatment Room and was scheduled for his four experimental sessions. He was told, as in the Librium/alcohol experiment, not to eat anything for four hours nor drink any alcoholic beverages for 12 hours prior to his next session. He was also told he could not smoke during the experimental sessions. He selected the food he wished to have ready for him after the experimental sessions from a list of sandwiches. Finally, he was told he would have to remain in the Treatment Room following the experimental sessions until his BAL returned to $0.03 \%$.

### 4.4.3 Test Session Procedure

When the subject arrived at the Treatment Room for an experimental session, he was allowed to rest for 10 minutes. During this time he completed a Short Drug Effects Questionnaire (SDEQ), to provide information on
his personal reactions to the use of drugs. This SDEQ is shown in Appendix D.

Next, the subject's blood pressure (both arms) and pulse rate were measured and recorded, as well as his BAL. He was then given a drink: the contents of the drink depended on which of the four experimental conditions was in effect for that session:
a. Placebo/no alcohol
b. Placebo/alcohol
c. Dexedrine/no alcohol
d. Dexedrine/alcohol

If the session called for alcohol, the drink contained (as in the Librium/alcohol experiment) 1 oz . of 80 -proof Vodka for every 25 lb . of body weight, mixed with an equal amount of orange juice. For a placebo session, the drink consisted of orange juice in an amount equal in volume to the alcohol drink.

The subject was told he had no more than 30 minutes to finish the drink, and the time of finishing was recorded. The subject was then given his drug (or placebo). The drug was three $5-\mathrm{mg}$ tablets of amphetamine (Dexedrine). while the placebo was three tablets of identical appearance. A double-blind procedure was followed -- the drugs were prepared ahead of time by non-experimental personnel, placed in an envelope and marked with the subject's number and test session number. These drug treatments were prepared using a Latin square statistical design.

Thirty minutes after he took the drug, the subject's blood pressure, pulse and BAL were again taken and recorded, the respiration belt was attached, and he went immediately to either the DSL or SPB for testing -- some subjects went to the DSL first and then the SPB, others followed the reverse order. The DSL and SPB test sessions
followed the same procedures as in the Librium/alcohol experiment. Following the DSL or SPB session, the subject returned to the Treatment Room where a BAL measurement was made immediately, followed by blood pressure and pulse measurements.

The subject then was given an alcohol or placebo "booster" drink. Fifteen minutes after the booster, BAL, pulse and blood pressure measurements were again made, and the subject was taken to the SPB (or DSL) for the second part of the test session. Following this, the subject returned to the Treatment Room and again was given a Breathalyzer test followed by blood pressure and pulse measurements. A registered nurse administered these tests to all subjects in all experiments.

The subject was then given a Long Drug Effects Questionnaire (LDEQ) to complete and was allowed to eat. The LDEQ is shown in Appendix E. If the subject was in a placebo/no alcohol session, he was also given a confidential questionnaire to fill out, to obtain biographical background information that would be of use in interpreting his performance. This confidential questionnaire is shown in Appendix F. Finally, if the subject was not in an alcohol session, he was allowed to leave following completion of the confidential questionnaire and answering the questions listed below. If he was in an alcohol session, his BAL was checked every hour until it returned to $0.03 \%$. Before leaving, each subject was asked the following questions, and his answers were recorded on the MAD Treatment Data Sheet as shown in Appendix C.
a. How many hours since you last consumed solid foods?
b. How many hours since you last consumed beverages?
c. During the past week have you consumed al-
coholic beverages? If yes, how many ounces?
d. During the past week have you taken any drugs, prescription or otherwise? If yes, what and how much?

The subject was then allowed to select his sandwiches for the next session. The four test sessions were scheduled at one week intervals (same time and same day of week, if possible). If a subject had to repeat a run due to equipment malfunction, he was rescheduled one week later, and the treatment was repeated.

### 4.5 Marihuana and Alcohol

### 4.5.1 Subject Procurement

Subjects were all UCLA students, obtained in similar fashion to that used in the previously described Dexedrine/alcohol experiment. All were males over 21 with valid driver's licenses. They were chosen on the basis of their MMPI profiles and personal interview data (Appendix B). Selection criteria included a "good" or "reasonably good" MMPI profile, plus a drug history of having used hallucinogenics no more than three times in the past year but a familiarity with marihuana usage (10 times minimum), plus good physical health.

When subjects were scheduled for their initial training session, they were told that there would be a minimum of four test sessions following the training session, that they would be required to stay for a minimum of four hours for each session, and that they would be paid $\$ 2.50 /$ hour for their participation in the study plus $\$ 2.50$ for the interview. Payment would be made only at the completion of the full series of sessions. Appli-
cants who failed to meet all criteria were given $\$ 2.50$ for participating in the interview and excused.
4.5.2 Training Session

When the subject appeared for his training session he was taken to the Treatment Room where he read and signed a consent and release form (Appendix A). At the same time, a General Information Sheet (Appendix C) was filled out for the subject. The subject was weighed, in order to compute the alcohol dosage and marihuana extract dosage. The procedure of the treatments was explained to the subject, i.e., that he would receive a drink followed by either 1 or 2 cigarettes, that he would then drive in the DSL, and that afterwards he would have to remain in the Treatment Room until he was "down." "Down" was to be interpreted as occurring no sooner than four hours after arrival plus whatever time was required for the subject's BAL to return to $0.03 \%$ and his pulse to return to within 15 beats per minute of what it had been prior to his treatment. The subject was told that his breath and pulse samples would be taken at various times during his stay and that there would be questionnaires to be filled out both before and after his drive.

The subject was then taken to the DSL for the training session on the subsidiary task and simulator vehicle. He was returned to the Treatment Room, scheduled for his next four (experimental) sessions, told about the eating and drinking prohibitions prior to coming in again, and given the list of sandwiches to select from.
4.5.3 Test Session Procedure

There were four different treatments. In each treatment the subject was required to both drink and smoke, but since the protocol differed for each treatment, the treatment times varied accordingly. The treatments were as follows:

| Treatment | Smoke | Drink |
| :---: | :---: | :---: |
| 1 | Marihuana (dosage: 200 micrograms Delta-9THC per kg body weight) | Placebo |
| 2 | Placebo (post-extracted marihuana | Marihuana extract (dosage: 310 micrograms Delta-9THC per kg body weight) |
| 3 | Placebo (post-extracted marihuana | Alcohol (0.69 gm per kg body weight) |
| 4 | Placebo (post-extracted marihuana | Placebo |

The dosage levels were achieved in the following ways:

Alcohol drink: 1 oz. of 80-proof Vodka for each 30 lb of body weight, mixed with an equal amount of Mai-Tai mix, plus a placebo marihuana extract in the proportion of 1 cc per 80 lb of body weight.

Placebo drink: Same as above, except alcohol replaced by an equal amount of Mai-Tai mix.

Marihuana extract drink: Same as the placebo drink, except that placebo marihuana extract was replaced with an equal amount of active marihuana extract (1 cc/80 lb body weight, necessary to administer a dose of 310 micrograms per kg body weight, based on a 1.13\% Delta-9THC assay for the liquid marihuana extract).

Marihuana smoke: Two hand-rolled, standard length
cigarettes, each containing approximately $\frac{1}{2}$ gram of smoked marihuana material, necessary to administer a dose of 200 micrograms $/ \mathrm{kg}$ body weight, based on a $1.5 \%$ Delta-9THC assay for the smoked marihuana material.

Placebo smoke: One or two hand-rolled, standard length cigarettes, each containing approximately $\frac{1}{2}$ gram of detoxified smoked marihuana material.

The treatments, as well as the films the subject would be viewing in the DSL, were randomized according to a Latin square statistical design. Three Latin squares were to be completed for the study.

When the subject arrived for a test session, he was allowed to rest for 10 minutes, during which time he filled out the SDEQ, and then his pulse was recorded as a baseline measure. He was then given his drink, and told that he had a maximum of 30 minutes in which to finish it. The time of beginning and of completion of the drink was recorded. A registered nurse was present at all times.

Immediately upon completion of the drink, the subject began his smoke. For his placebo session, the subject smoked two placebo cigarettes, and for his smoke session two marihuana cigarettes. For both the marihuana extract and alcohol sessions, he smoked one placebo cigarette. In each case, the time of the beginning and completion of the smoke was recorded. The subject could not differentiate between the marihuana and placebo cigarettes on the basis of appearance or feel. In every case, the subject was given a maximum of 10 minutes to smoke a cigarette ( 20 minutes maximum if his treatment called for smoking two cigarettes). All cigarettes were smoked to completion; they were placed in a special holder that permitted total reduction to ash. The smoking procedure for all cigarettes was identical, and was as follows:
a. 3-second "drag"
b. 20-second "hold"
c. l5-second exhalation and relaxation period
d. 3-second "drag." etc.

Immediately upon completion of the smoke, the subject's pulse and BAL were recorded -- except in the extract sessions, in which the smoke was followed by a 50 minute rest period to allow for ingestion of the extract. Subjects were allowed a small amount to eat during this time, if they so desired.

The respiration belt was then fitted on the subject and he was escorted to the DSL. The start time of his entry into the DSL was recorded on the MAD Treatment Data Sheet, see Appendix C. After the subject's drive, he was returned to the Treatment Room and the time of his return was recorded.

Immediately upon his return to the Treatment Room, pulse and BAL were once again measured and recorded and the subject was given the LDEQ to complete. Thereafter, the subject was fed and required to remain to the completion of the four hours plus whatever time was required for his pulse and BAL to return to the levels previously stated as prerequisites for his release. If the subject was in a placebo condition, he was given the pre-viously-mentioned confidential questionnaire to fill out.

Before the subject was dismissed, he was asked the number of hours since he had last consumed solids; the number of hours since he had last consumed beverages; if during the week he had consumed any alcoholic beverages, and if so, how much; if during the past week the subject had taken any drugs, and if so, what and how much. This information was recorded on the data sheet. The subject was then allowed to select sandwiches for the next session.

Subjects were scheduled for test sessions one week apart. If a subject had to repeat a session due to equipment malfunction, he was rescheduled one week later and the treatment was repeated.

A record book was maintained containing the following items for each subject for each session:
a. Date of session
b. Treatment
c. Film viewed
d. Status of session (good or lost)
e. Time of arrival
f. Time of departure
g. Total time
h. Observations, notes and comments
i. Contents of drink
j. Weight of subject
4.6 Supplemental Experiment

After the experiment had been underway for some time, it was decided (with the concurrence of DOT) to add a fifth treatment condition, a combination of alcohol and marihuana extract. The treatment protocol for this marihuana/alcohol experiment was to be the same as for the marihuana extract runs. Three different dosage levels were to be used for this (fifth) test session, as follows:
a. $1 / 3$ the original alcohol dosage $+2 / 3$ the original marihuana extract dosage.
b. $1 / 2$ the original alcohol dosage $+1 / 2$ the original marihuana extract dosage.
C. $2 / 3$ the original alcohol dosage $+1 / 3$ the original marihuana extract dosage.

The three different levels were based on the dosage levels for the subjects as determined for the other experimental sessions.

Since three Latin Squares were to be completed for the four-session marihuana study, one Latin Square could be attempted with each of these various treatment. levels.

Attempts were made to contact the 14 subjects who were already completed or in the process of being completed, to persuade them to come in or remain with the study for the additional test. Of these, 11 were contacted and agreed to do so; 4 were given dosage level a., 3 were given dosage level b., and 4 were given level c.

### 5.1 Soundproof Booth

The soundproof booth (auditory task) was used on the Librium and Dexedrine studies. It was not used on the Marihuana study, and due to equipment malfunctions, only the Librium data could be analyzed. Tables 3l-34 show the results of alcohol, Librium, and alcohol with Librium on both "concentrated attention" and "divided attention" scores. Table 31 shows some alcohol effect on concentrated attention in terms of a decrease in percent correct scores from a mean of 83.75 to 76.50. Combined Librium and alcohol mean is 77.75 but Librium alone is 81.50, almost identical to the placebo score. Divided attention scores show the expected overall decrease compared to concentrated attention scores. The same pattern of alcohol effect and combined Libriumalcohol effect is shown as for concentrated attention scores; however, Tables 32 and 33 reveal that these effects are significant only at the 0.25 level of confidence on the concentrated attention task while the effects on the divided attention task are significant at the 0.05 level. Apparently these effects are largely due to alcohol. The Librium data show little evidence of effect on percent correct scores although the differences are in the same direction as for the effects of alcohol, namely a decrease compared with placebo data.

### 5.2 Vehicle Control

Vehicle control scores are shown in Appendix G. They do not reveal any marked effects either on the "drive" scores or on the "event" scores for any of the drugs under study.

### 5.3 Subsidiary Task

### 5.3.1 Scoring

This score is presented in terms of driver response times as tallied in three different ways:
a. "All Responses Including Omissions" is a gross accumulation of response times including those when the driver initially made an incorrect response or made no response at all, in which case a time of 9.9 seconds was recorded for that event.
b. "All Responses Excluding Omissions" does not include any event score when the driver failed to respond and therefore is more indicative of reaction time when the stimulus is detected.
c. "All Initially Correct Responses" does not include those events to which an incorrect response (error) was made. This is closer to "pure" reaction time.

The subsidiary task data were analyzed using Biomedical Computer Programs BMDX63 and BMDO5V. These routines $(32,33)$ perform general linear hypothesis and multivariate general linear hypothesis analyses of variance. The following tables are labeled with the appropriate program used. Details of these programs, including the algorithm used, are given in Appendix $H$.

Tables 1, 8, 13 show the purely alcohol effect for each of the three groups that were studied. Increases up to $16.5 \%$ in response time are shown as compared with the placebo times.

Tables 2, 3, 9, 15 show that there are increases in response time when drivers are given only marihuana or Librium, and a decrease when given only Dexedrine. The
analyses of variance in Tables 2, 3, 9, and 15 show that the purely marihuana effects are significant at the 0.25 level or better, the purely Librium effect at the 0.05 level, and the purely Dexedrine effect at the 0.05 level. These effects are clearer when the order effect of drug administration (prior treatment) is considered as a base line.

Tables 7 and 9 show that for the combination of Librium and alcohol there is an increase in.response time-compared with that for Librium alone. For the combination of Dexedrine with alcohol, as shown in Tables 14 and 15 , there is a decrease in response time compared to that for alcohol alone and little difference from the placebo condition. The confounding which is present by virtue of the experimental design, reveals little or no treatment effect over the order effect on the combination of marihuana and alcohol as shown in Tables 28, 29, and 30.

### 5.3.2 Task Loading

The subsidiary task results are presented in terms of four levels of task loading in Tables 4-6, 10-12, 16-18. The placebo ( $P-P$ ) rows of data in these tables show that all three groups of drivers while on placebos displayed a general increase in response time as the task load increased. This effect is significant at the 0.05 level of significance.

The tables also show that, for each drug in turn, the drug effects are produced across the four levels of task loading and in some instances appear to have more effect at the higher levels of task loading and to disrupt the orderly progression of reaction time increase from low to
high task load levels. This disruption is particularly clear when comparing Dexedrine effects mixed with alcohol effects. Apparently response time is returned to near placebo levels, but the orderly progression is disrupted. Due to the unavoidable confounding of the order effect with the drug treatment effect, no task-loading analysis was performed on the marihuana in combination with the alcohol data.

Table 1
SUBSIDIARY TASK REACTION TIME, MARIHUANA STUDY, ALCOHOL DRINK GIVEN WITH PLACEBO SMOKE

| RESPONSE CATEGORIES | REACTION TIME (SECONDS) |  | PERCENT CHANGE | DEGREES OF FREEDOM |  | F | $\begin{aligned} & \text { LEVEL } \\ & \text { OF } \\ & \text { SIGNI- } \\ & \text { FICANCE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { PLACEBO } \\ & \text { DRINK } \\ & \text { AND } \\ & \text { SMOKE } \end{aligned}$ | ALCOHOL DRINK WITH PLACEBO SMOKE |  |  |  |  |  |
|  |  |  |  | NUMERATOR | $\begin{aligned} & \text { DENOM- } \\ & \text { INATOR } \end{aligned}$ |  |  |
| All responses including omissions | 1.2796 | 1.2933 | 1.07 | 1 | 8 | 1.797 | . 25 |
| All responses excluding omissions | 1.2157 | 1.2445 | 2.37 | 1 | 8 | 1.023 | - |
| All initially correct responses | 1.1825 | 1.2087 | 2.22 | 1 | 8 | 1.317 | - |
| Number of omissions | 4 | 3 |  |  |  |  |  |

Table 2
SUBSIDIARY TASK REACTION TIME, MARIHUANA STUDY, PLACEBO DRINK GIVEN WITH MARIHUANA SMOKE

| RESPONSE CATEGORIES | REACTION TIME (SECONDS) |  | PERCENT CHANGE | DEGREES OF FREEDOM |  | F | LEVEL OF SIGNIFICANCE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { PLACEBO } \\ & \text { DRINK } \\ & \text { AND } \\ & \text { SMOKE } \end{aligned}$ | PLACEBO DRINK WITH MARIHUANA SMOKE |  |  |  |  |  |
|  |  |  |  | NUME- <br> RATOR | DENOM- <br> INATOR |  |  |
| All responses including omissions | 1.2796 | 1.2975 | 1.40 | 1 | 8 | 1.853 | . 25 |
| All responses excluding omissions | 1.2157 | 1.2658 | 4.12 | 1 | 8 | 2.149 | . 25 |
| All initially <br> correct responses | 1.1825 | 1.2312 | 4.12 | 1 | 8 | 1.870 | . 25 |
| Number of omissions | 4 | 2 |  |  |  |  |  |

Table 3
SUBSIDIARY TASK REACTION TIME, MARIHUANA STUDY, MARIHUANA EXTRACT DRINK GIVEN WITH PLACEBO SMOKE

| RESPONSE CATEGORIES | REACTION TIME (SECONDS) |  | PERCENT CHANGE | DEGREES OF FREEDOM |  | F | LEVEL OF <br> SIGNI- <br> FICANCE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { PLAACEBO } \\ & \text { DRINK } \\ & \text { AND } \\ & \text { SMOKE. } \end{aligned}$ | MARIHUANA EXTRACT DRINK WITH PLACEBO SMOKE |  |  |  |  |  |
|  |  |  |  | NUMERATOR | DENOM- <br> INATOR |  |  |
| All responses including omissions | 1.2796 | 1.3028 | 1.81 | 1 | 8 | 2.179 | . 25 |
| All responses excluding omissions | 1.2157 | 1.2870 | 5.86 | 1 | 8. | 3.608 | . 10 |
| All initially correct responses | 1.1825 | 1. 2397 | 4.84 | 1 | 8 | 3.787 | . 10 |
| Number of omissions | 4 | 1 |  |  |  |  |  |

SUBSIDIARY TASK BMDX63 STATISTICS, MARIHUANA STUDY, ALL RESPONSES INCLUDING OMISSIONS

| Source of Variation |  |  |  |  | Degr | ees | Of | Free | edo |  | F |  |  |  |  | Level of Significance |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Numerator |  |  | Denominator |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Order } \\ & \text { Treatments } \\ & \text { Load } \end{aligned}$ |  |  |  |  | 3 |  |  |  | 8 |  | 0.436 |  |  |  |  | - |  |  |  |  |
|  |  |  |  | 33 |  |  | 6 |  |  |  | 0.621 |  |  |  |  | $. \overline{0}$ |  |  |  |  |
|  |  |  |  | 6 | 5.933 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Task Load |  |  |  |  |  | $\underline{2}$ |  |  |  |  | 3 |  |  |  |  | $\begin{gathered} 4 \\ \text { (High) } \end{gathered}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Treat- } \\ & \text { ments } \end{aligned}$ |  | F | F | Sig. |  | DF |  |  |  | Sig. | DF |  |  |  | Sig. | DF |  |  | Sig. |  |
|  | N | D |  |  |  |  | D |  |  | N |  | T |  |  | D F |  |  |  |  |  |  |  |  |
| $\mathrm{A}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ | 1 | 8 | 0.170 |  | - |  | 8 | 0.675 |  |  |  |  | 8 | 3.142 |  | . 25 | 1 | 8 | 1.627 |  | . 25 |
| $\mathrm{P}-\mathrm{S} / \mathrm{P}-\mathrm{P}$ | 1 | 8 | 0.991 |  |  |  |  | 1.359 |  | - | 1 |  | 1. |  |  | . 25 | 1 | 8 | 3.266 |  | . 25 |
| $\mathrm{E}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ | 1 | 8 | 1.604 |  | . 25 | 1 | 81.841 |  |  |  | 1 | 8 | 0.51 |  | - | 1 | 8 | 1.67 |  | . 25 |
| * Alcohol drink given with placebo smoke, placebo drink given with marihuana smoke, and marihuana extract drink given with placebo smoke, each session-combination compared with scores from placebo drink and smoke session |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Paired Reaction Times, Task Load Level vs. Treatment Condition across All Subjects; Sample Size ( $n$ ), Mean Reaction Time ( $t$, seconds), standard deviation (SD, seconds): session-combination scores: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Task Load 1 <br> Level: |  |  |  |  |  | 2 |  |  |  |  | 3 |  |  |  |  | 4 |  |  |  |  |
| Treatments | n | t | ( sec ) |  | (sec) | n | $t(\mathrm{sec}) \mathrm{SD}(\mathrm{sec})$ |  |  |  | n | $t$ (sec) |  | SD (sec) |  | n | $t$ (sec) SD (sec) |  |  |  |
| $\mathrm{P}-\mathrm{P}$ | 12 | 1.1 | 763 |  | 1432 | 17 |  | . 2977 |  | 2445 | 11 |  | 065 | 0.3175 |  | 101.3434 |  |  | 0.4402 |  |
| A-P | 12 | 1.1 | 673 |  | 1249 | 17 |  | 2191 |  | 2063 | 1 |  | 100 | 0.4222 |  | $\left\lvert\, \begin{aligned} & 10 \\ & 10 \end{aligned}\right.$ | 1.4268 |  | 0.3462 |  |
| $\mathrm{P}-\mathrm{S}$ | 12 | 1.2 | 409 |  | 1444 | 17 |  | 2071 |  | 1134 | 11 |  | 3216 | 0.2527 |  | $\left\lvert\, \begin{aligned} & 10 \\ & 10 \end{aligned}\right.$ | 1.4928 |  | 0.7204 |  |
| E-P | 12 | 1.2 | 598 |  | 1771 | 17 |  | 2946 |  | 1925 | 11 | 1.1 | 637 | 0.1195 |  | 10 | 1.5194 |  | 0.4039 |  |

Table 5
SUBSIDIARY TASK BMDX63 STATISTICS, MARIHUANA STUDY, ALL RESPONSES EXCLUDING OMISSIONS

| Source of Variation |  |  |  |  | Degr | ees | Of | Free | edom |  | F |  |  |  |  | Level of Significance |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Numerator |  |  | Denominator |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Order } \\ & \text { Treatments } \\ & \text { Load } \end{aligned}$ |  |  |  |  | 3 |  | 8 |  |  |  | 0.351 |  |  |  |  | - |  |  |  |  |
|  |  |  |  |  | 3 |  |  |  |  |  | 1.424 |  |  |  |  | $. \overline{05}$ |  |  |  |  |
|  |  |  |  |  | 3 |  | 6 |  |  |  | 9.117 |  |  |  |  |  |  |  |  |  |
| Task Load  <br> Level: I <br> (Low)  |  |  |  |  |  | 2 |  |  |  |  | 3 |  |  |  |  | $\begin{gathered} 4 \\ (\text { High }) \end{gathered}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Treat- } \\ & \text { ments } \end{aligned}$ | DF |  |  | Sig. |  | DF |  | $F$ |  | Sig. | N - F |  |  |  |  | DF |  |  | Sig. |  |
|  | N | D |  |  |  |  |  |  |  |  |  |  |  |  |  | F |  |  |  |
| $\mathrm{A}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ |  | 8 | 0.170 |  | - |  |  | 1.50 |  |  |  |  | 0.624 |  |  |  |  | 8 | 8 1.560 <br> 8 3.645 <br> 8.176  |  | . 25 |
| $\mathrm{P}-\mathrm{S} / \mathrm{P}-$ |  | 8 | 0.97 |  |  |  |  | 2.27 |  | 25 |  |  | 1.9 |  |  |  |  | 10 |  |  |
| $\mathrm{E}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ | 1 | 8 | 1.386 |  | - |  | 8 | 3.59 |  | 10 | 1 | 8 | 0.518 |  |  | 8 |  | . 10 |  |  |
| * Alcohol drink given with placebo smoke, placebo drink given with marihuana smoke, and marihuana extract drink given with placebo smoke, each session-combination compared with scores from placebo drink and smoke session. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Paired Reaction Times, Task Load Level vs. Treatment Condition across All Subjects; Sample Size ( $n$ ), Mean Reaction Time ( $t$, seconds), standard deviation (SD, seconds): session-combination scores: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{ll} \text { Task Load } \\ \text { Level: } & 1 \end{array}$ |  |  |  |  |  | 2 |  |  |  |  | 3 |  |  |  |  | 4 |  |  |  |  |
| Treat- | n | $t(\mathrm{sec})$ |  | SD (sec) |  | n | t (sec) |  | SD (sec) |  | n | $t$ (sec) |  | SD (sec) |  | n | $t$ (sec) |  | SD (sec) |  |
| $\mathrm{P}-\mathrm{P}$ | $\begin{array}{l\|l} \hline 2 & 1.1763 \\ .2 & 1.1673 \\ 2 & 1.2409 \\ 2 & 1.2598 \\ \hline \end{array}$ |  |  | 0.1432 |  | 17 | 1.2017 |  | 0.1556 |  | 11 | 1.1603 |  | 0.0841 |  | 10 | 1.3434 |  | 0.4402 |  |
| A-P |  |  |  | 0.1249 |  | 17 | 1.2191 |  | 0.2063 |  | 1 | 1.26650 |  |  | 0.2661 | 1 | 1.3500 |  | 0.1877 |  |
| P-S |  |  |  | 0.1444 |  | 17 | 1.20710 |  | 0.1134 |  | 11 | 1.32160 |  |  | 0.2527 | 12 | 1.3498 |  | 0.3323 |  |
| E-P |  |  |  | 0.1 | 1771 | 17 | 1.2946 0.1925 |  |  |  | 11 | 1.16370 |  |  | 0.1195 |  | 1. | 4394 |  | 3801 |

Table 6
SUBSIDIARY TASK BMDX63 STATISTICS, MARIHUANA STUDY, ALL INITIALLY CORRECT RESPONSES

| Source of Variation |  | Degrees of Freedom |  |  |  |  |  | F |  |  |  | Level of Significance |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Numerator |  |  | Denominator |  |  |  |  |  |  |  |  |  |  |
| Order |  | 3 |  |  | 8 |  |  | 0.202 |  |  |  | Significance |  |  |  |
| Treatments |  |  |  |  | 6 |  |  | 1.254 |  |  |  | - |  |  |  |
| Load |  | 3 |  |  |  |  |  | 19.178 |  |  |  | . 01 |  |  |  |
| Task Load |  | $\begin{gathered} 1 \\ \text { (Low) } \end{gathered}$ |  | 2 |  |  |  | 3 |  |  |  | $\begin{gathered} 4 \\ \text { (High) } \end{gathered}$ |  |  |  |
| Level: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Treat- } \\ & \text { ments* } \end{aligned}$ | DF | F | Sig. | DF |  | F | Sig. | DF |  | F | Sig. | DF |  | F | Sig. |
|  | D |  |  | N | D |  |  | N | D |  |  | N | D |  |  |
| A-P/P-1 1 | 8 | 0.339 | - | 1 | 8 | 1.552 | . 25 | 1 | 8 | 0.997 | - | 1 | 8 | 1.766 | . 25 |
| $\mathrm{P}-\mathrm{S} / \mathrm{P}-\mathrm{P} 1$ | 8 | 0.863 | - | 1 | 8 | 2.515 | . 25 | 1 | 8 | 2.916 | . 25 | 1 | 8 | 0.926 | - |
| $\mathrm{E}-\mathrm{P} / \mathrm{P}-\mathrm{P} 1$ | 8 | 1.557 | . 25 | 1 | 8 | 3.707 | . 10 | 1 | 8 | 0.818 | - | 1 | 8 | 5.982 | . 05 |

Alcohol drink given with placebo smoke, placebo drink given with marihuana smoke, and marihuana extract drink given with placebo smoke, each session-combination compared with scores from placebo drink and smoke session.

Paired Reaction Times, Task Load Level vs. Treatment Condition across All Subjects; Sample Size ( $n$ ), Mean Reaction Time ( $t$, seconds), standard deviation (SD, seconds): session-combination scores:

| Task Load Level: |  |  |  | 2 |  |  | 3 |  |  | 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Treatments | n | $t(\mathrm{sec})$ | SD (sec) | n | $t(\mathrm{sec})$ | SD (sec) | n | $t$ (sec) | SD (sec) | n | $t$ (sec) | SD (sec) |
| $\mathrm{P}-\mathrm{P}$ | 12 | . 1481 | 0.1439 | 17 | 1.1857 | 0.1797 | 11 | 1.1496 | 0.1044 | 10 | 1.2732 | 0.2744 |
| A-P | 12 | 1.1326 | 0.0756 | 17 | 1.2078 | 0.2399 | 11 | 1.1660 | 0.1201 | 10 | 1.3790 | 0.2464 |
| P-S | 12 | 1. 2242 | 0.1422 | 17 | 1.1676 | 0.1099 | 11 | 1.3186 | 0.2999 | 10 | 1.2774 | 0.2337 |
| E-P | 12 | 1. 2389 | 0.1593 | 17 | 1.2687 | 0. 1977 | 11 | 1.1594 | 0.1061 | 10 | 1.3323 | 0. 3267 |

Table 7
SUBSIDIARY TASK REACTION TIME, LIBRIUM STUDY, ALCOHOL DRINK GIVEN WITH LIBRIUM PILL

| RESPONSE CATEGORIES | REACTION TIME (SECONDS) |  | PERCENT CHANGE | $\begin{aligned} & \text { DEGREES OF } \\ & \text { FREEDOM } \end{aligned}$ |  | F | ```LEVEL OF SIGNI- FICANCE``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PLACEBO |  |  |  |  |  |  |
|  | $\begin{aligned} & \text { DRINK } \\ & \text { AND } \\ & \text { PILL } \end{aligned}$ | WITH LIBRIUM PILL |  | NUME- <br> RATOR | DENOMINATOR |  |  |
| All responses including omissions | 0.9484 | 1.2022 | 26.8 | 1 | 4 | 0.241 | - |
| All responses excluding omissions | 0.9484 | 1.1357 | 19.7 | 1 | 4 | 0.035 | - |
| All initially correct responses | 0.9251 | 1.0722 | 15.9 | 1 | 4 | 2.224 | . 25 |
| Number of omissions | 0 | 3 |  |  |  |  |  |

Table 8
SUBSIDIARY TASK REACTION TIME, LIBRIUM STUDY, ALCOHOL DRINK GIVEN WITH PLACEBO PILL

| RESPONSE CATEGORIES | REACTION TIME (SECONDS) |  | PERCENT CHANGE | $\begin{aligned} & \text { DEGREES OF } \\ & \text { FREEDOM } \end{aligned}$ |  | F | $\begin{aligned} & \text { LEVEL } \\ & \text { OF } \\ & \text { SIGNI- } \\ & \text { FICANCE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { PLACEBO } \\ & \text { DRINK } \\ & \text { AND } \\ & \text { PILL } \end{aligned}$ | ALCOHOL DRINK WITH PLACEBO PILL |  |  |  |  |  |
|  |  |  |  | NUMERATOR | DENOMINATOR |  |  |
| All responses including omissions | 0.9484 | 1.0304 | 8.65 | 1 | 4 | 1.544 | - |
| All responses excluding omissions | 0.9484 | 0.9843 | 3.79 | 1 | 4 | 0.360 | - |
| All initially correct responses | 0.9251 | 0.9546 | 3.19 | 1 | 4 | 0.000 | - |
| Number of omissions | 0 | 2 |  |  |  |  |  |

Table 9
SUBSIDIARY TASK REACTION TIME, LIBRIUM STUDY, PLACEBO DRINK GIVEN WITH LIBRIUM PILL

| RESPONSE CATEGORIES | REACTION TIME (SECONDS) |  | PERCENT CHANGE | DEGREES OF FREEDOM |  | F | $\begin{aligned} & \text { LEVEL } \\ & \text { OF } \\ & \text { SIGNI- } \\ & \text { FICANCE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PLACEBO | PLACEBO DRINK WITH LIBRIUM PILL |  |  |  |  |  |
|  | $\begin{aligned} & \text { DRINK } \\ & \text { AND } \\ & \text { PILLL } \end{aligned}$ |  |  | NUME- <br> RATOR | DENOMINATOR |  |  |
| All responses including omissions | 0.9484 | 0.9935 | 4.76 | 1 | 4 | 4.938 | . 05 |
| All responses excluding omissions | 0.9484 | 0.9709 | 2.37 | 1 | 4 | 9.436 | . 05 |
| All initially correct responses | 0.9251 | 0.9235 | -0.173 | 1 | 4 | 0.958 | - |
| Number of omissions | 0 | 1 |  |  |  |  |  |

SUBSIDIARY TASK BMDX63 STATISTICS, LIBRIUM STUDY, ALL RESPONSES INCLUDING OMISSIONS

*Alcohol drink with Librium pill, alcohol drink with placebo pill, and placebo drink with Librium pill, session-combination scores compared with those from placebo drink and placebo pill session.

Paired Reaction Times, Task Load Level vs. Treatment Condition across All Subjects; Sample Size ( $n$ ), Mean Reaction Time ( $t$, seconds), standard deviation (SD, seconds): session-combination scores:

| $\begin{aligned} & \text { Task Load } \\ & \text { Level: } \end{aligned}$ |  |  |  | 2 |  |  | 3 |  |  | 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Treatments | n | $t(\mathrm{sec})$ | SD (sec) | n | $t$ (sec) | SD ( sec ) | n | $t$ (sec) | SD ( sec ) | n | $t(\mathrm{sec})$ | SD. (sec) |
| $\mathrm{P}-\mathrm{P}$ | 12 | 0.8998 | 0.0699 | 17 | 0.9364 | 0.1255 | 11 | 0.9624 | 0.1122 | 10 | 1.0082 | 0.1606 |
| A-L | 12 | 1.0560 | 0.2253 | 17 | 1.2599 | 0.3685 | 11 | 1.2672 | 0.3616 | 10 | 1.2078 | 0.2741 |
| $A-P$ | 12 | 0.9385 | 0.0544 | 17 | 1.1007 | 0.4227 | 11 | 0.9559 | 0.0869 | 10 | 1.1079 | 0.2523 |
| P-L | 12 | 0.9344 | 0.1158 | 17 | i. 0052 | 0.2700 | 11 | 0.9539 | 0.0747 | 10 | 1.0879 | 0.2047 |

Table 11
SUBSIDIARY TASK BMDX63 STATISTICS, LIBRIUM STUDY, ALL RESPONSES EXCLUDING OMISSIONS

|  |  |  | Degrees of Freedom |  |  |  |  |  | F |  |  |  | Level of Significance |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Variation | Numerator |  | Denominator |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 3 |  | 2 |  |  | 1.815 |  |  |  | - |  |  |  |
| Treatments Load |  |  | 3 |  |  |  |  |  | 2.631 |  |  |  | $. \overline{0}$ |  |  |  |
|  |  |  | 2 | 77.986 |  |  |  |  |  |  |  |  |  |  |  |
| Task Load 1 |  |  |  |  | 2 |  |  |  | 3 |  |  |  | $\begin{gathered} 4 \\ \text { (High) } \end{gathered}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Treatments* | DF |  | F | Sig. |
|  | N | D |  |  | N | D |  |  | N | D |  |  | N | D |  |  |
| $\mathrm{A}-\mathrm{L} / \mathrm{P}-\mathrm{P}$ | 1 | 4 | 1.326 | - | 1 | 4 | 0.001 | - | 1 | 4 | 0.690 | - | 1 | 4 | 1.114 | - |
| A-P/P-P | 1 | 4 | 1.136 | - | 1 | 4 | 0.086 | - | 1 | 4 | 0.360 | - | 1 | 4 | 2.361 | . 25 |
| $\mathrm{P}-\mathrm{L} / \mathrm{P}-\mathrm{P}$ | 1 | 4 | 3.636 | . 25 | 1 | 4 | 4.494 | . 10 | 1 | 4 | 0.767 | - | 1 | 4 | 2.615 | . 25 |

*Alcohol drink given with Librium pill, alcohol drink given with placebo pill, placebo drink given with Librium pill, each session-combination scores compared with those from placebo drink and pill sessions.

Paired Reaction Times, Task Load Level vs. Treatment Condition across All
Subjects; Sample Size ( $n$ ), Mean Reaction Time ( $t$, seconds), standard
deviation (SD, seconds); session-combination scores:

| Task Load Level: |  |  |  | 2 |  |  | 3 |  |  | 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Treat- } \\ & \text { ments } \end{aligned}$ | n | $t$ ( sec ) | SD (sec) | n | t (sec) | SD (sec) | n | $t$ (sec) | SD (sec) | n | $t(\mathrm{sec})$ | SD (sec) |
| $\mathrm{P}-\mathrm{P}$ | 12 | 0.8998 | 0.0699 | 17 | 0.9364 | 0.1255 | 11 | 0.9624 | 0.1122 | 10 | . 0082 | 0.1606 |
| A-L | 12 | 1.0560 | 0.2253 | 17 | 1.1261 | 0.2470 | 11 | 1.1631 | 0.3011 | 10 | 1.2078 | 0.2741 |
| A-P | 12 | 0.9385 | 0.0544 | 17 | 0.9592 | 0.1082 | 11 | 0.9559 | 0.0869 | 10 | R. 1079 | 0.2523 |
| P-L | 12 | 0.9344 | 0.1158 | 17 | 0.9382 | 0.0855 | 11 | 0.9539 | 0.0747 | 10 | 1. 0879 | 10.2047 |

Table 12
SUBSIDIARY TASK BMDX63 STATISTICS, LIBRIUM STUDY, ALI INITIALLY CORRECT RESPONSES

*Alcohol drink given with Librium pill, alcohol drink given with placebo pill, placebo drink given with Librium pill, session-combination scores compared with those of placebo drink and pill session.

Paired Reaction Times, Task Load Level vs. Treatment Condition across All Subjects; Sample Size ( $n$ ), Mean Reaction Time ( $t$, seconds), standard deviation (SD, seconds): session-combination scores:

| Task Load Level: |  |  |  | 2 |  |  | 3 |  |  | 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Treatments | n | $t$ ( sec ) | SD (sec) | n | $t$ (sec) | SD (sec) | n | $t$ (sed) | SD (sec) | n | $t$ ( sec ) | SD ( sec ) |
| $\mathrm{P}-\mathrm{P}$ | 12 | 0.8759 | 0.0743 | 17 | 0.9260 | 0.1311 | 11 | 0.9528 | 0.1364 | 10 | 0.9334 | 0.0872 |
| A-L | 12 | 1.0234 | 0.2759 | 17 | 1.0901 | 0.2783 | 11 | 1.0556 | 0.1996 | 10 | 1.0857 | 0.2165 |
| A-P | 12 | 0.9171 | 0.0417 | 17 | 0.9564 | 0.1285 | 11 | 0.9246 | 0. 1029 | 10 | 1.0398 | 0.3072 |
| $\mathrm{P}-\mathrm{L}$ | 12 | 0.9220 | 0.1174 | 17 | 0.8941 b | 0.0476 | 11. | 0.9106 | 0.0591 | 10 | 0.9926 | 0.1561 |

Table 13
SUBSIDIARY TASK REACTION TIME, DEXEDRINE STUDY, ALCOHOL DRINK GIVEN WITH PLACEBO PILL

| RESPONSE CATEGORIES | REACTION TIME (SECONDS) |  | PERCENT CHANGE | DEGREES OF FREEDOM |  | F | $\begin{aligned} & \text { LEVEL } \\ & \text { OF } \\ & \text { SIGNI- } \\ & \text { FICANCE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PLACEBO | ALCOHOL DRINK WITH PLACEBO PILL |  |  |  |  |  |
|  | $\begin{aligned} & \text { DRINK } \\ & \text { AND } \\ & \text { PILL } \end{aligned}$ |  |  | NUME- <br> RATOR | DENOM- <br> INATOR |  |  |
| All responses including omissions | 1.1505 | 1.3401 | 16.5 | 1 | 12 | 3.215 | . 10 |
| All responses excluding omissions | 1.1505 | 1.2846 | 11.7 | 1 | 12 | 3.680 | . 10 |
| All initially correct responses | 1.0850 | 1.2129 | 11.8 | 1 | 12 | 5.386 | . 05 |
| Number of omissions | 0 | 5 |  |  |  |  |  |

Table 14
SUBSIDIARY TASK REACTION TIME, DEXEDRINE STUDY, ALCOHOL DRINK GIVEN WITH DEXEDRINE PILL

| RESPONSE CATEGORIES | REACTION TIME (SECONDS) |  | PERCENT CHANGE | DEGREES OF FREEDOM |  | F | $\begin{aligned} & \text { LEVEL } \\ & \text { OF } \\ & \text { SIGNI- } \\ & \text { FICANCE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PLACEBO DRINK AND PILL | ALCOHOL DRINK WITH DEXEDRINE PILL |  |  |  |  |  |
|  |  |  |  | NUMERATOR | DENOMINATOR |  |  |
| All responses including omissions | 1.1505 | 1.1493 | -0.104 | 1 | 12 | 0.001 | - |
| All responses excluding omissions | 1.1505 | 1.1493 | -0.104 | 1 | 12 | 0.001 | - |
| All initially correct responses | 1.0850 | 1.0959 | 1.00 | 1 | 12 | 0.404 | - |
| Number of omissions | 0 | 0 |  |  |  |  |  |

Table 15
SUBSIDIARY TASK REACTION TIME, DEXEDRINE STUDY, PLACEBO DRINK GIVEN WITH DEXEDRINE PILL

| RESPONSE CATEGORIES | REACTION TIME (SECONDS) |  | PERCENT CHANGE | DEGREES OF FREEDOM |  | F | $\begin{aligned} & \text { LEVEL } \\ & \text { OF } \\ & \text { SIGNI- } \\ & \text { FICANCE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PLACEBO | PLACEBO DRINK |  |  |  |  |  |
|  | $\begin{aligned} & \text { DRINK } \\ & \text { AND } \\ & \text { PILL } \end{aligned}$ | WITH DEXEDRINE PILL |  | NUME- <br> RATOR | DENOMINATOR |  |  |
| All responses including omissions | 1.1505 | 1.0749 | -6.57 | 1 | 12 | 3.331 | . 10 |
| All responses excluding omissions | 1.1505 | 1.0636 | -7.55 | 1 | 12 | 7.654 | . 05 |
| All initially correct responses | 1.0850 | 1.0110 | -6.82 | 1 | 12 | 4.954 | . 05 |
| Number of omissions | 0 | 1 |  |  |  |  |  |

Table 16
SUBSIDIARY TASK BMDX63 STATISTICS, DEXEDRINE STUDY, ALL RESPONSES INCLUDING OMISSIONS

| Source of Variation |  |  |  | Degrees of Freedom |  |  |  |  | F |  |  |  | Level of Significance |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Numerator |  | Denominator |  |  |  |  |  |  |  |  |  |  |
| Order <br> Treatments <br> Load |  |  |  | 3 |  | (12 |  |  | 0.546 |  |  |  |  |  |  |  |
|  |  |  |  | 3 |  |  |  |  | 1.782 |  |  |  | $\begin{aligned} & 25 \\ & .10 \end{aligned}$ |  |  |  |
|  |  |  |  |  |  |  |  |  | 3.617 |  |  |  |  |  |  |  |
| Task Load I <br> Level: (Low) |  |  |  |  | 2 |  |  |  | 3 |  |  |  | $\begin{gathered} 4 \\ (\text { High }) \end{gathered}$ |  |  |  |
| Treatments* |  | F | F | Sig. | DF |  | F | Sig. | DF |  | F | Sig. | DF |  | F | Sig. |
|  | N | D |  |  | N | D |  |  | N | D |  |  | N | D |  |  |
| $\mathrm{A}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ | 1 | 12 | 2.850 | . 25 | 1 | 12 | 3.119 | . 10 | 1 | 12 | 3.234 | . 10 | 1 | 12 | 0.327 | - |
| $\mathrm{A}-\mathrm{D} / \mathrm{P}-\mathrm{P}$ | 1 | 12 | 2.165 | . 25 | 1 | 12 | 0.000 | - | 1 | 12 | 1.017 | - | 1 | 12 | 4.665 | . 05 |
| $\mathrm{P}-\mathrm{D} / \mathrm{P}-\mathrm{P}$ |  | 12 | 0.646 | - | 1 | 12 | 3.039 | . 25 | 1 | 12 | 0.082 | - | 1 | 12 | 3.151 | . 10 |

*Alcohol drink given with placebo pill, alcohol drink given with dexedrine pill, placebo drink given with dexedrine pill, session-combination scores compared with placebo drink and pill session scores.

Paired Reaction Times, Task Load Level vs. Treatment Condition across All Subjects; Sample Size ( $n$ ), Mean Reaction Time ( $t$, seconds), standard deviation (SD, seconds); session-combination scores:

| Task Load Level: |  |  |  | 2 |  |  | 3 |  |  | 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Treatments | n | $t$ ( sec ) | SD (sec) | n | $t$ ( sec) | SD ( sec ) | n | $t$ (sed) | SD (sec) | n | $t$ (sec) | SD (sec) |
| $\mathrm{P}-\mathrm{P}$ | 12 | 1.0582 | 0.0670 | 17 | 1.1011 | 0.1485 | 11 | 1.1045 | 0.1184 | 10 | 1.3990 | 0.3969 |
| A-P | 12 | 1.3453 | 0.2648 | 17 | 1.3018 | 0.2305 | 11 | 1.2865 | 0.1993 | 10 | 1.4570 | 0.4490 |
| A-D | 12 | 1.1557 | 0.1434 | 17 | 1.0955 | 0.0832 | 11 | 1.1587 | 0.1025 | 10 | 1.2233 | 0.2106 |
| P-D | 12 | 1.0211 | 0.0525 | 17 | 1.0354 | 0.1121 | 11 | 1.0873 | 0.0940 | 10 | 1.1921 | 0.3174 |

Table 17
SUBSIDIARY TASK BMDX63 STATISTICS, DEXEDRINE STUDY, ALL RESPONSES EXCLUDING OMISSIONS

| Source of Variation |  |  |  | Degrees of Freedom |  |  |  |  |  |  | F |  |  |  | Level of Significance |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Numerator |  |  | Denominator |  |  |  |  |  |  |  |  |  |  |  |  |
| Order |  |  |  |  | 3 |  | 12 |  |  |  | 0.393 |  |  |  | - |  |  |  |  |
| Treatme | ents |  |  |  | 3 |  | 10 |  |  |  | 4.201 |  |  |  | . 05 |  |  |  |  |
| Load |  |  |  |  | 3 |  |  |  |  |  | 7.352 |  |  |  | . 01 |  |  |  |  |
| - |  |  |  |  |  | 2 |  |  |  |  | 3 |  |  |  | $\begin{gathered} 4 \\ (H i g h) \end{gathered}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Treat- |  | D | F |  | Sig. | DF |  | F |  | Sig. | DF | F |  | Sig. | DF |  | F | Sig. |  |
| ments* | N | D |  |  | N | D | N ${ }^{\text {d }}$ |  |  | N | D |  |  |  |  |  |  |  |  |  |  |  |
| $A-P / P-P$ |  |  | 3.1702.1650.646 |  |  |  |  | 12 3.739 <br> 12 0.000 <br> 12 3.039 |  |  | .10 | 1 12 <br> 1 12 <br> 1 12 | 3.2341.01750.082 |  | . 10 |  | 12 | 0.039 <br> 4.665 <br> 9.595 |  | - |
| $A-D / P-P$ | 1 | 12 |  |  | . 25 |  | - |  |  |  | - |  |  |  | 2 |  | 10 |  |  |
| $\mathrm{P}-\mathrm{D} / \mathrm{P}-\mathrm{P}$ | 1 | 12 |  |  | - | 1. | . 25 |  |  |  |  |  |  |  |  |  |  |  |  |
| *Alcohol drink given with placebo pill, alcohol drink given with dexedrine pill. placebo drink given with dexedrine pill, session-combination scores compared with placebo drink and pill session scores. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Paired Reaction Times, Task Load Level vs. Treatment Condition across All Subjects: Sample Size ( $n$ ), Mean Reaction Time ( $t$, seconds), standard deviation (SD, seconds); session-combination scores: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Task LoadLevel: |  |  |  |  |  | - |  |  |  |  | 3 |  |  |  | 4 |  |  |  |  |
| Treatments | n |  | $(\mathrm{sec})$ | SD | (sec) | n |  | (sec) |  | ( sec ) | n | $t(\sec )$ | SD (sec) |  | n | $t$ (sec) |  | SD (sec) |  |
| P-P | 12 | 1.0 | 582 |  | 0670 | 17 |  | 1011 |  | 1485 | 11 | 1.1045 |  |  | 10 |  | 3990 |  | 3969 |
| A-P | 12 | 1.1 | 974 |  | 1351 | 17 |  | 2704 |  | 1587 | 11 | 1.2865 | $\begin{aligned} & 0.1184 \\ & 0.1993 \end{aligned}$ |  | 10 |  | 4076 |  | 3334 |
| A-D | 12 | 1.1 | 557 |  | 1434 | 17 |  | 0955 |  | 0832 | 11 | 1.1587 | 0.1025 |  | 10 |  | 2233 |  | 2106 |
| P-D | 12 | 1.02 | 211 |  | 0525 | 17 |  | 0354 |  | 1121 | 11 | 1.0873 | 0.0940 |  | 10 |  | 1386 |  | 2075 |

Table 18
SUBSIDIARY TASK BMDX63 STATISTICS, DEXEDRINE STUDY, ALL INITIALLY CORRECT RESPONSES


Table 19
SUBSIDIARY TASK BMDO5V STATISTICS, IATIN SQUARES, MARIHUANA STUDY, ALL RESPONSES INCLUDING OMISSIONS
$4 \times 4$ Basic Latin Square

| Source | $d f$ | SS | MS | F-ratio | Sig-Level |
| :--- | ---: | :--- | :--- | :--- | :---: |
| Error | 24 | 2.031 | 0.0846 | - | - |
| Group | 3 | 0.790 | 0.263 | 3.108 | 0.05 |
| Gessions | 3 | 0.381 | 0.127 | 1.501 | 0.25 |
| Treat. | 3 | 0.254 | 0.0846 | 1.00 | - |
| Recid. | 6 | 0.529 | 0.088 | 1.040 | - |
| Subjects | $B$ | 4.976 | 0.622 | 7.352 | 0.01 |
|  |  |  |  |  |  |

Table 20
SUBSIDIARY TASK BMDO5V STATISTICS, LATIN SQUARES, MARIHUANA STUDY, ALL RESPONSES EXCLUDING OMISSIONS
$4 \times 4$ Basic Latin Square

| Source | df | SS | MS | F-ratio | Sig-Level |
| :--- | ---: | :---: | :---: | :---: | :---: |
| Error | 24 | 1.156 | 0.048 | - | - |
| Group | 3 | 0.386 | 0.129 | 2.687 | 0.10 |
| Session | 3 | 0.146 | 0.049 | 1.020 | - |
| Treat. | 3 | 0.084 | 0.025 | 0.521 | - |
| Rec'd | 6 | 0.398 | 0.066 | 1.375 | - |
| Subjects | 8 | 3.505 | 0.438 | 9.125 | 0.01 |
|  |  |  |  |  |  |

Table 21
SUBSIDIARY TASK BMDO5V STATISTICS, LATIN SQUARES, MARIHUANA STUDY, ALL INITIALLY CORRECT RESPONSES
$4 \times 4$ Basic Latin Square

| Source | df | SS | MS | F-ratio | Sig-Level |  |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: |
| Grror | 24 | 1.178 | 0.049 | - | - |  |
| Group | 3 | 0.210 | 0.070 | 1.428 | 0.25 |  |
| Session | 3 | 0.160 | 0.053 | 1.081 | - |  |
| Treat. | 3 | 0.142 | 0.047 | 0.969 | - |  |
| Rec'd. | 6 | 0.532 | 0.089 | 1.816 | 0.25 |  |
| Subjects | 8 | 2.891 | 0.361 | 6.367 | 0.01 |  |
|  |  |  |  |  |  |  |

Table 22
SUBSIDIARY TASK BMDO5V STATISTICS, LATIN SQUARES, LIBRIUM STUDY, ALL RESPONSES INCLUUDING OMISSIONS
$4 \times 4$ Busic Latin Scmaro

| Sourco | df | SS | MS | F-ratio | Stu-ravol |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Error | 12 | 0.547 | 0.046 | - | $\cdots$ |
| Group | 3 | 0.628 | 0.209 | 4.550 | 0.05 |
| Session | 3 | 0.188 | 0.063 | 1.370 | - |
| Treat. | 3 | 0.292 | 0.097 | 2.100 | 0.25 |
| Rec'd. | 6 | 0.320 | 0.053 | 1.150 | - |
| Subjects | 4 | 0.510 | 0.128 | 2.790 | 0.10 |

Table 23
SUBSIDIARY TASK BMDO5V் STATISTICS, LATIN SQUARES, LIBRIUM STUDY, ALL RESPONSES EXCLUDING OMISSIONS
$4 \times 4$ Basic Latin Square

| Source | df | SS | MS | F-ratio | Sig-Level |  |
| :--- | ---: | ---: | ---: | :--- | :---: | :---: |
| Error | 12 | 0.158 | 0.0132 | - | - |  |
| Group | 3 | 0.439 | 0.146 | 11.05 | 0.01 |  |
| Session | 3 | 0.095 | 0.032 | 2.420 | 0.25 |  |
| Treat. | 3 | 0.184 | 0.061 | 4.630 | 0.05 |  |
| Rec'd. | 6 | 0.100 | 0.017 | 1.290 | - |  |
| Subjects | 4 | 0.337 | 0.084 | 6.370 | 0.01 |  |
|  |  |  |  |  |  |  |

Table 24
SUBSIDIARY TASK BMDO5V STATISTICS, LATIN SQUARES, LIBRIUM STUDY, ALL INITIALLY CORRECT RESPONSES
$4 \times 4$ Bagić Latin Square

| Source | df | SS | MS | F-ratio | Sig-Level |  |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| Error | 12 | 0.220 | 0.018 | - |  |  |
| Group | 3 | 0.419 | 0.139 | 7.730 | . | 0.01 |
| Session | 3 | 0.086 | 0.029 | 1.610 | 0.25 |  |
| Sreat. | 3 | 0.114 | 0.038 | 2.120 | 0.25 |  |
| Rec'd. | 6 | 0.081 | 0.013 | 0.723 |  |  |
| Subjects | 4 | 0.453 | 0.113 | 6.280 |  | 0.01 |
|  |  |  |  |  |  |  |

Table 25
SUBSIDIARY TASK BMDO5V STATISTICS, LATIN SQUARES, DEXEDRINE STUDY, ALL RESPONSES INCLUDING OMISSIONS
$4 \times 4$ Basic Latin Square

| Sourco | df | SS | MS | E-ratio | Sig- Level |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Error | 36 | 1.9854 | .0550983 | - | - |  |
| Group | 3 | .22566 | .07522 | 1.368 | - |  |
| Session | 3 | .14413 | .048043 | -1 | - |  |
| Treat. | 3 | .60501 | .20167 | 3.66 | .05 |  |
| Rec'd. | 6 | .22892 | .038153 | $<1$ |  |  |
| Subjects | 12 | 1.613 | 0.134 | 2.436 | 0.05 |  |
|  |  |  |  |  |  |  |

Table 26
SUBSIDIARY TASK BMDO5V STATISTICS, LATIN SQUARES, DEXEDRINE STUDY, ALL RESPONSES EXCLUDING OMISSIONS

4'× 4 Bagdc Latin Square

| Source | df | SS | MS | F-ratio | Sig-Ievel |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prror | 36 | 0.97969 | . 027214 | - | - |
| Group | 3 | . 14966 | . 049887 | 1.83 | . 25 |
| Session | 3 | . 06534 | . 02178 | $<1$ | - |
| Treat. | 3 | . 41362 | . 13787 | 5.07 | . 01 |
| Rec'd. | 6 | . 11401 | . 019002 | 41 | - |
| Subjects | 12 | 1.369 | 0.114 | 4.22 | 0.01 |

Table 27
SUBSIDIARY TASK BMDO5V STATISTICS, LATIN SQUARES, DEXEDRINE STUDY, ALL INITIALLY CORRECT RESPONSES
$4 \times 4$ Basic Latin Square

| Source | df | SS | MS | F-ratio | Sig-Level |
| :--- | ---: | :--- | :--- | :--- | :--- | :---: |
| Error | 36 | .75385 | $0.0209403-$ | - |  |
| Group | 3 | .06362 | .02121 | 1.01 | - |
| Session | 3 | .04072 | .01357 | $<1$ | - |
| Treat. | 3 | .37257 | .12419 | 5.93 | -01 |
| Recid. | 6 | .09243 | .01541 | $<1$ | - |
| Subjects | 12 | 0.923 | 0.076 | 3.80 | 0.01 |

Table 28

SUBSIDIARY TASK REACTION TIME, MARIHUANA STUDY, SUBJECTS VERSUS TREATMENTS ACROSS EVENTS

| RESPONSE CATEGORIES |  | TREATMENTS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Pla/Pla | Alc/P1a | Smk/Pla | Ext/Pla | Alc/Ext |
| All responses including omissions | N <br> Mean <br> Std. dev. | $\begin{aligned} & 550 \\ & 1.2796 \\ & 0.9778 \end{aligned}$ | $\begin{aligned} & 538 \\ & 1.2930 \\ & 0.9409 \end{aligned}$ | $\begin{aligned} & 550 \\ & 1.2975 \\ & 0.7932 \end{aligned}$ | $\begin{aligned} & 549 \\ & 1.3028 \\ & 0.7322 \end{aligned}$ | $\begin{aligned} & 529 \\ & 1.2147 \\ & 0.6235 \end{aligned}$ |
| All responses excluding omissions | N <br> Mean <br> Std. dev. | $\begin{aligned} & 546 \\ & 1.2157 \\ & 0.6340 \end{aligned}$ | $\begin{aligned} & 535 \\ & 1.2445 \\ & 0.6804 \end{aligned}$ | 548 1.2658 0.5950 | 548 <br> 1.2870 <br> 0.6315 | 528 <br> 1.1981 <br> 0.4930 |
| All initially correct responses | N <br> Mean <br> Std. dev. | $\begin{aligned} & 473 \\ & 1.1825 \\ & 0.5162 \end{aligned}$ | $\begin{aligned} & 451 \\ & 1.2087 \\ & 0.5744 \end{aligned}$ | $\begin{aligned} & 467 \\ & 1.2312 \\ & 0.5429 \end{aligned}$ | $\begin{aligned} & 499 \\ & 1.2397 \\ & 0.5643 \end{aligned}$ | 471 <br> 1.1665 <br> 0.4246 |

Table 29
SUBSIDIARY TASK REACTION TIME, MARIHUANA STUDY, EVENTS VERSUS TREATMENTS ACROSS SUBJECTS

| RESPONSE CATEGORIES |  | TREATMENTS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Pla/Pla | Alc/Pla | Smk/Pla | Ext/Pla | Alc/Ext |
| All responses including omissions | N <br> Mean <br> Std. dev. | $\begin{aligned} & 550 \\ & 1.2796 \\ & 0.9778 \end{aligned}$ | $\begin{aligned} & 538 \\ & 1.2930 \\ & 0.9409 \end{aligned}$ | $\begin{aligned} & 550 \\ & 1.2975 \\ & 0.7932 \end{aligned}$ | $\begin{aligned} & 549 \\ & 1.3028 \\ & 0.7322 \end{aligned}$ | $\begin{aligned} & 529 \\ & 1.2147 \\ & 0.6235 \end{aligned}$ |
| All responses excluding omissions | N <br> Mean Std. dev. | $\begin{aligned} & 546 \\ & 1.2157 \\ & 0.6340 \end{aligned}$ | $\begin{aligned} & 535 \\ & 1.2445 \\ & 0.6804 \end{aligned}$ | $\begin{aligned} & 548 \\ & 1.2658 \\ & 0.5950 \end{aligned}$ | $\begin{aligned} & 548 \\ & 1.2870 \\ & 0.6315 \end{aligned}$ | $\begin{aligned} & 528 \\ & 1.1981 \\ & 0.4930 \end{aligned}$ |
| ```All initially correct responses``` | N <br> Mean <br> Std. dev. | $\begin{aligned} & 473 \\ & 1.1825 \\ & 0.5162 \end{aligned}$ | $\begin{aligned} & 451 \\ & 1.2087 \\ & 0.5744 \end{aligned}$ | $\begin{aligned} & 467 \\ & 1.2312 \\ & 0.5429 \end{aligned}$ | $\begin{aligned} & 499 \\ & 1.2397 \\ & 0.5643 \end{aligned}$ | $\begin{aligned} & 471 \\ & 1.1665 \\ & 0.4246 \end{aligned}$ |

SUBSIDIARY TASK REACTION TIME, MARIHUANA STUDY, SUBJECTS VERSUS RUNS ACROSS EVENTS

| RESPONSE |  | RUNS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 |
| All responses including omissions | N <br> Mean <br> std. dev. | $\begin{aligned} & 550 \\ & 1.3771 \\ & 1.0653 \end{aligned}$ | $\begin{aligned} & 550 \\ & 1.2195 \\ & 0.6054 \end{aligned}$ | $\begin{aligned} & 548 \\ & 1.2473 \\ & 0.6277 \end{aligned}$ | $\begin{aligned} & 539 \\ & 1.3299 \\ & 1.0482 \end{aligned}$ | $\begin{aligned} & 529 \\ & 1.2147 \\ & 0.6235 \end{aligned}$ |
| All responses excluding omissions | N <br> Mean <br> Std. dev. | $\begin{aligned} & 546 \\ & 1.3140 \\ & 0.7711 \end{aligned}$ | $\begin{aligned} & 549 \\ & 1.2035 \\ & 0.4759 \end{aligned}$ | $\begin{aligned} & 547 \\ & 1.2313 \\ & 0.5044 \end{aligned}$ | $\begin{aligned} & 535 \\ & 1.2651 \\ & 0.7354 \end{aligned}$ | $\begin{aligned} & 528 \\ & 1.1981 \\ & 0.4930 \end{aligned}$ |
| All initially correct responses | N <br> Mean <br> Std. dev. | $\begin{aligned} & 493 \\ & 1.2598 \\ & 0.6205 \end{aligned}$ | $\begin{aligned} & 466 \\ & 1.1616 \\ & 0.3869 \end{aligned}$ | $\begin{aligned} & 469 \\ & 1.2173 \\ & 0.5192 \end{aligned}$ | $\begin{aligned} & 462 \\ & 1.2224 \\ & 0.6311 \end{aligned}$ | $\begin{aligned} & 471 \\ & 1.1665 \\ & 0.4246 \end{aligned}$ |

Table 31
SOUNDPROOF BOOTH STATISTICS, LIBRIUM

|  |  |  | Pla | Alc | Lib | Lib/Alc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Concentrated Attention | \% correct | Mean: | 83.75 | 76.50 | 81.50 | 77.75 |
|  |  | SD : | 5.42 | 15.22 | 6.98 | 11.89 |
|  | Delta-prime | Mean : | 2.10 | 1.79 | 1.97 | 1.70 |
|  |  | SD : | 0.57 | 1.10 | 0.56 | 0.73 |
|  | Beta | Mean : | 1.10 | 2.81* | 1.22 | 0.99 |
|  |  | SD : | 0.44 | 4.28 | 0.80 | 0.56 |
| Divided Attention | \% Correct (Total) | Mean : | 57.75 | 43.25 | 52.50 | 44.00 |
|  |  | SD: | 21.24 | 20.24 | 19.35 | 24.51 |
|  | Delta-prime | Mean : | 1.87 | 1.32 | 1.84 | 1.35 |
|  |  | SD : | 0.63 | 0.70 | 0.65 | 0.65 |
|  | Beta | Mean: | 0.98 | 0.82 | 0.88 | 0.90 |
|  |  | SD : | 0.45 | 0.28 | 0.60 | 0.31 |
|  | Det. <br> \% Correct | Mean : | 81.00 | 72.75 | 79.00 | 72.50 |
|  |  | SD : | 8.94 | 10.85 | 10.24 | 9.26 |
|  | \# <br> \% Correct | Mean : | 66.25 | 56.00 | 65.25 | 56.00 |
|  |  | SD : | 23.20 | 24.89 | 21.39 | 29.29 |

* Without extreme score, Mean $=1.21$ SD $=0.76$

Table 32
SOUNDPROOF BOOTH STATISTICS，LIBRIUM， CONCENTRATED ATTENTION，PERCENT CORRECT

Source $\quad$ df $\quad$ SS $\quad$ F－ratio Sig．－level

|  | Error | 12 | 807.0 | 67.3 | － | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Group | 3 | 866.5 | 288.8 | 4.29 | 0.05 |
|  | Session | 3 | 288.5 | 96.1 | 1.43 | － |
|  | Treatment | 3 | 268.5 | 89.5 | 1.33 | － |
|  | Residual | 6 | 572.0 | 95.3 | 1.42 | － |
|  | Subjects | 4 | 1077.0 | 269.2 | 4.00 | 0.05 |


| $\stackrel{ \pm}{\text { \＃}}$ | Error | 15（12） | 807.0 | 67.3 | － | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{0}^{0}$ | Group | 3 | 849.0 | 283.0 | 4.21 | 0.05 |
| F－ | Session | 3 | 257.0 | 85.6 | 1.27 | － |
|  | Treatment | 3 | 373.0 | 124.0 | 1.84 | 0.25 |
|  |  |  |  |  |  |  |
| －安 ${ }_{4}$ | Treatment | 3 | 339.0 | 113.0 | 1.68 | 0.25 |
| ¢ $\times$ 成 | Subjects | 4 | 1078.0 | 270.0 | 4.01 | 0.05 |


| 我 | Error | 15（12） | 807.0 | 67.3 | － | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \％ | Group | 3 | 143.0 | 47.6 | 0.71 | － |
|  | Session | 3 | 289.0 | 96.3 | 1.43 | － |
|  | Treatment | 3 | 307.0 | 102.0 | 1.52 | 0.25 |
| A. | Prior |  |  |  |  |  |
|  | Treatment |  |  |  |  |  |
| $\begin{array}{ll} 4 & 0 \\ 0 \end{array}$ | Base Line | 3 | 427.0 | 142.0 | 2.11 | 0.25 |
|  | Subjects | 4 | 1077.0 | 269.0 | 4.00 | 0.05 |

Table 33
SOUNDPROOF BOOTH STATISTICS, LIBRIUM, DIVIDED ATTENTION, PERCENT CORRECT

Source $\quad$ df $\underline{S S} \quad$ MS F-ratio Sig.-level

|  | Error | 12 | 1275 | 106 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . ${ }_{\text {F }}$ | Group | 3 | 8067 | 2689 | 25.37 | 0.01 |
| \% | Session | 3 | 350 | 117 | 1.10 | - |
| . | Treatment | 3 | 1171 | 390 | 3.68 | 0.05 |
| ¢ | Residual | 6 | 465 | 77.5 | 0.73 | - |
| $\underset{+}{\times}$ | Subjects | 4 | 4541 | 1135 | 10.70 | 0.01 |


| $\stackrel{7}{4}$ | Error | 15(12) | 1275 | 106 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Group | 3 | 7431 | 2477 | 23.37 | 0.01 |
| \% | Session | 3 | 392 | 131 | 1.24 | - |
| \& ${ }_{0}^{0}$ | Treatment | 3 | 1453 | 484 | 4.57 | 0.05 |
|  | Prior <br> Treatment | 3 | 445 | 148 | 1.40 | - |
| - | Subjects | 4 | 4321 | 1080 | 10.19 | 0.01 |



Table 34
SOUNDPROOF BOOTH STATISTICS, LIBRIUM, DIVIDEI ATTENTION, INTERACTIONS, PERCENT CORRECT

## Measure

Order
Treatments
Order X Treatments
Librium/Alcohol X Placebo
Alcohol X Placebo
45.46

Librium X Placebo 1.00
Alcohol X Librium
Librium/Alcohol X Librium
Librium/Alcohol X Alcohol

## F-ratio

2.37
29.17
1.57
5.92
5.68
1.78
0.01
0.10
0.01
0.10
0.25

### 6.1 General

The results of this study indicate that it has been successful in measuring some change in performance as a function of the various drugs and combinations of drugs tested. The data seem to be indicative not only of an increase in subsidiary task reaction time but also of some disruption of the normally orderly relationship between the driving task and reaction time to the visual subsidiary task that represents unexpected or suddenly occuring traffic events. This indication is shown by the change in pattern as well as by an increase in reaction time of the subsidiary task scores when they were analyzed in terms of the four levels of driving task load.

The driving-safety importance of these differences can now be discussed in comparison with the effects of alcohol; alcohol being the one drug in the group for which field studies have already established a significant relationship with the likelihood of accident involvement.

For the most part, it appears that Dexedrine, when taken alone, improves (decreases) reaction time as compared with the palcebo runs and with the alcohol runs. The alcohol runs showed the expected increase in reaction time; the combination of Dexedrine with alcohol apparently restored the reaction time to palcebo level, but there still remains the disruption of the relationship with the task loading level. This disruption is apparent in the alcohol, the Dexedrine, and the combination of Dexedrine with alcohol. The discovery of this disruption is relevant to certain other findings in concurrent studies. Perhaps the most important relationship in these other concurrent studies is between visual peripheral
attention and alcohol. This difference is also being found in marihuana by other researchers in the field (34). Their findings support the possibility that differences may be even more pronounced for marihuana than for alcohol. The significance of the visual field studies is that the lack of spare mental capacity is associated with a narrowing of the perceptual field of attention. In other words, it seems that two factors are involved; one is a reduction in the rate of sampling the external environment, due to a slowdown in the central nervous systems processing of visual or auditory information (such as in the case of the soundproof chamber). The second factor is an actual narrowing of the visual field.

The overall result of the work that has been analyzed to date is summarized as follows:
a. On Dexedrine, alcohol continued to show the same effects on the subsidiary task as it did before. However, it did not show the direction of the differences to the same statistical degree.
b. Librium data were inconclusive but the direction of the differences were similar to that of alcohol and a potentiation when alcohol and Librium are combindd.
c. Dexedrine shows a somewhat different result:
while the drivers on alcohol showed the same decrement as before, their runs on Dexedrine alone showed a decrease in reaction time.

The Dexedrine result is similar to the results that were obtained in a study using certain cold remedies, with and without antihistamines. The cold remedies without antihistamine showed an improvement -- a decrease -- in reaction time, apparently due to the stimulants in these remedies.

The Dexedrine when combined with alcohol shows no change in reaction time in the subsidiary task as compared against the placebo runs. The results of the earlier cold remedy study and of the Librium portion of the study are consistent with each other. This is because the cold remedy contains stimulants which are apparently offset in those preparations containing antihistamine; the antihistamines overrule the stimulant effect. When the antihistamine is removed the stimulant effect remains and is revealed in decreased reaction time to the subsidiary task. However, with cold remedies, there was some displacement of the relationship to the levels of task loading. This is also found with Librium, Dexedrine, and marihuana.

The overall conclusion that can be reached at this point in the study is that marihuana affects reaction time in a direction similar to that of alcohol, but that there is some lack of comparison when it comes to the behavior of these subjects on their placebo runs. There are several possible explanations of such differences. For example. there was an overall longer reaction time as well as more variability on the placebo runs, for the marihuana group, than for the other two groups (Librium and Dexedrine). There was also more variability in this study than existed in the cold-remedy group of subjects.

More work should be conducted in an attempt to clear up these differences in behavior on the placebo run. Attention should be given to the possibility that differences in behavior of the marihuana subjects on the placebo run could be due to the fact that the placebo for marihuana is a much more effective placebo because it is not readily distinguishable from the marihuana containing the active THC ingredient. This could account for greater differences in performance on placebo runs. Another possible factor is that, of the marihuana subjects, those who are accustomed to using marihuana may be a more suggestible
group than the other groups of subjects. Combining this possibility of greater suggestibility with a less detectable placebo could explain the results.

Subsequent studies should include data collected with two kinds of control: one where subjects receive the same kind of placebo as before (a cigarette made from inactive material) and another run when they are administered no smoke at all. In this way the subjects would know they receive nothing on one of their runs. The comparison between these two runs could then reveal any suggestibility factor.

Subjects in subsequent studies should be more carefully screened and chosen. They should be somewhat older students, more likely graduates or employees. They should also have scored $65 \%$ or better in accuracy on the divided attention task before they are accepted into the Driving Simulator testing group. Therefore, they should be a more stable group, in performance, both in terms of reaction time to the divided attention task and in general, because of their greater maturity and reliability in normal everyday pursuits. In addition, they might be expected to be somewhat less suggestible, although to date there is no hard evidence to back up this assumption.

The Librium results are not clear; however, there is a possibility that upon running another group of subjects, they might produce cleaner results. Also, the important question has been raised as to whether the Librium would have this type of effect, or to this degree, if indeed the subjects were anxious people rather than ordainary students who presumably were not anxious in the clinical sense of the word. Therefore, it is hoped that it will be possible to obtain support for testing additional subjects on Librium who have been classified as clinically anxious. This would also produce another set of data for a cross-validation type of comparison with the present results.

The Dexedrine results are based upon 16 subjects, which is twice the number of subjects used in the Librium study; therefore, more confidence may be placed in the results. The results also came out in what can be considered an expected direction, namely decreasing reaction time when Dexedrine only is ingested, and the tendency to off-set the increased reaction time due to alcohol when Dexedrine and alcohol are combined.

Therefore, it appears that although it is inconclusive at this time that marihuana effects driving, it does show indications of impairing performance in a way similar to alcohol.

It further appears that marihuana should not be permitted while driving any more than is alcohol; in spite of the fact that the dose level effects remain more obscure than alcohol. On the trial runs of marihuana in combination with alcohol, there was no evidence of a potentiation effect.

The publication of such conclusions should await the collection and analysis of the next set of data currently being generated at ITTE, which should be available in the fall of 1972. As for Librium, it is not yet clear that this drug by itself also affects drivers in an unfortunate way similar to alcohol. Specifically, there appears to be an increase in reaction time to the subsidiary task and an even further increase when combined with alcohol than with either Librium or alcohol alone.

As far as Dexedrine is concerned, it seems that it does improve (decrease) reaction time, but it also tends to disrupt the normal relationship between the driving task and mental capacity. This relationship is not as clear as the researchers would like it, and as funds become available the data that has been collected will be analyzed further for the possibility of better understanding the
relationship between increased reaction time and disrupted relationship with task load level and driving safety. At this time, it would appear that Dexedrine should not be recommended until such time as more evidence becomes available. As far as the possibility of off-setting the deleterious effects of alcohol, this should remain only as a possibility until further, more detailed analysis can be made of the data or additional data collected.

The overall conclusion is that while results are statistically inconclusive, there is a trend of all three of these drugs alone and in combination with alcohol to in some way affect the driver's ability to share his attention and respond in a normal way while driving in the UCLA Driving Simulator. One can conclude that because this disruption of the normal ability is similar to that produced by $0.10 \%$ BAL, it is very likely to be related to increased probability of accident involvement. Consideration of the ways in which these effects may be operating led to the following hypothesis about brain levels, drugs and driving.

### 6.2 Brain Levels, Drugs and Driving

It has been well established that as humans learn physical skills such as walking, running or playing tennis, the coordination between nerves and muscles is at first ragged and unpredictable. Then, with practice, it becomes graceful and reliable. Studies have shown that this progression from rough to smooth performance is accomplished by shifting nervous system control from the upper brain centers to the lower brain and brain stem.

The control of these actions that are routinely practiced and well learned requires less and less conscious attention for successful performance; less and less effort is required to respond to even minimal cues. As a result, increasing confidence is gained (35).

These considerations may account for many of the difficulties associated with drugs and driving.

The ITTE research program has produced evidence that the activity of divided attention which is controlled by higher brain centers is affected at lower dosage levels of both drugs and alcohol than are the vehicle-control scores which are controlled by lower brain centers. In other words, this present research project has shown that the nature of the effect on driving is to produce performance decrements in higher brain centered activities such as CNS processing time of information inputs rather than lower brain centered activities such as learned motor skills. The relevance to traffic accident causation has been shown indirectly by means of the following research findings:
a. Subsidiary task (visual) scores.
b. Comparison of blood levels to field-test results (for alcohol).
c. Comparison with alcohol effects in the same drivers (for other drugs).

These findings have a profound implication on highway safety practices. For example, the sobriety tests in most states are based on physical skills (lower brain centered) which are not affected until fairly high levels of $B A L$ are reached. Even the chemical tests are set at the $0.10 \%$ level or higher.

To make matters worse, drivers expecting to be affected in physical ways (lower brain centered) may set personal criteria (to drive or not) based on their subjective awareness of a deficit in physical performance. However, when they do not experience motor-skill degradation they then judge themselves as fit. This places them in double jeopardy, so to speak, because they then are not even looking for a deficit in the critical upper brain centered processes.

The nature of the deficit in the higher brain centers is little understood even by researchers. Drivers may only experience it as a sudden awareness of another vehicle on a collision course and blame the other driver for "darting out in front" of them. Researchers seeking driving effects in the lower brain center types of vehicle control (physical skills) are often disappointed since these are often not influenced by normal dosages. The disappointed researcher then tends to increase the skill level requirement of his tests beyond that actually used in driving. The drivers in turn tend to disregard performance decrements revealed by these increased demands on their skill because they recognize that these demands have been unnaturally exaggerated.

Other drugs, when combined with alcohol, can produce a potentiation. When this happens the effects are greater than the sum of the two individual doses. This can result in total effects that are even more subtle than either drug alone because the driver may assume he has only to be wary of the alcohol. He does not "read" the effects of the other drugs, nor of the combination.

Other factors such as age and experience probably interact with the three facts noted above to produce strong likelihoods that:
a. Inexperienced drivers are more severely affected because more of their control is taking place in the higher brain centers.
b. Habitual drinkers or marihuana users learn to cope to some degree; the constantly impaired skills are adapted to by the lower centers.
c. Inexperienced drivers who are also inexperienced drinkers will constitute a particularly hazardous group. This fact was revealed by a recent study (36) that came to our attention after this hypothesis was formulated.
d. Older drivers gradually lose the lower brain center control skills and must use an increasing proportion of higher center activity.
e. Older, inexperienced drivers are most severely affected.
f. Occasional drinkers or marihuana users will be affected more than habitual ones by the same dosage.

Future work needs to be done to demonstrate how these effects of drugs on higher brain centers may actually cause drivers not only to respond more slowly but also to totally fail to detect hazardous situation cues. Visual search studies have the potential of revealing such effects.

1 Anderson, O.W.. "Family costs for drugs and medicines," J. Am. Pharmaceutical Assn.. Vol. 18, Mar. 1957, pp. 148-149

2 Parry, H.J., "Use of psychotropic drugs by U.S. adults," Public Health Reports. Vol. 83. No. 10, Oct. 1968, pp. 799-810.

3 California Medical Association, "Self-medication practices," California Medicine, Vol. 107, No. 5, Nov. 1967, pp. 452-454.

4 Hine, C.H., and H.W. Turkel, Research of the scientific literature, reports on the effects on man of alcohol alone and in combination with other drugs, Technical Report No. 63-22, Arctic Aeromedical Laboratory, Fort Wainright, Alaska, July 1966.

5 Forney, R.B.. and F.W. Hughes, "Alcohol and drugs," Traffic Safety, Vol. 65, 1967, p. 23.

6 Zirkle, G.A.. P.D. King and O.B. McAtee, "Effects of chlorpromazine and alcohol on coordination and judgment," J. Am. Med. Assne, Vol. 171, 1959, pp. 1496-1499.

7 Zirkle, G.A.. O.B. McAtee, P.D. King and R. Van Dyke, "Meprobamate and small amounts of alcohol: effects on human ability, coordination and judgment," J. Am. Med. Assn., Vol. 173, 1960, pp. 1823-1825.

8 Buttiglieri, M.W., A.J. Brunse and H.W. Case, "Effects of alcohol and drugs on driving behavior," in T.W. Forbes (Ed.), Human factors in highway and traffic safety research, New York, Wiley, 1972.

9 Miller, J.G., "Objective measurements of the effects of drugs on driver behavior," J. Am. Med. Assn., Vol. 179. 1962. pp. 940-943.

10 Goodman, L., and A. Gilman, The pharmacological basis of therapeutics, 3rd Ed., New York, Macmillan, 1965, pp. 129-130.

11 Blumer, H., The world of youthful drug use, ADD Center Project, Final Report, School of Criminology, University of California, Berkeley.

12 Leake, C.D., Amphetamines: their actions and uses, Springfield, Illinois, C.C. Thomas, 1958.

13 Cole, J.O., and M.M. Katz, "The psychotomimetic drugs," J. Am. Med. Assn.. Vol. 187, 1964.

14 Mayor's Committee on Marijuana, Report of the Mayor's Committee on Marijuana, Jaques Cattel Press, Lancaster, Pennsylvania, 1944.

15 Moskowitz, H.A., The effects of alcohol on simulated driving behavior of alcoholics and social drinkers. Institute of Transportation and Traffic Engineering, UCLA Engineering Report No. 72-05, 1971.

16 Borkenstein, R.F., R.F. Crowther, R.P. Shumate, W.B. Ziel and R. Zylman, The role of the drinking driver in traffic accidents (The Grand Rapids Study), Bloomington, Indiana, Department of Police Administration, Indiana University, February 1964.

17 Zylman, R.. "Analysis of studies comparing collisioninvolved drivers and non-involved drivers," J. of Safety Research. Vol. 3, No. 3, Sep. 1971, pp. 116128.

18 Hulbert, S.F., and H.A. Moskowitz, Alcohol level and driving performance, Institute of Transportation and Traffic Engineering, UCLA Engineering Report No. 71-17. April 1971.

19 Kaluger, N.A., and G.L. Smith, Jr., "Driver eye-movement patterns under conditions of prolonged driving and sleep deprivation," Highway Research Record, No. 336. 1970. pp. 92-106.

20 Belt. B.L.. Driver eye movements as a function of low alcohol concentrations, Technical Report, Ohio State University, June 1969.

21 Moskowitz, H.A., and S. Sharma, "Alcohol, division of attention, and tunnel vision," Human Factors, in press.

22 Weil, A.T.. N.C. Zinberg and J.M. Nelsen, "Clinical and psychological effects of marihuana in man," Sci-ence, Vol. 162, 13 Dec. 1968, pp. 1234-1242.

23 Zinberg, N.C.. and A.T. Weil, "The effects of marihuana on human beings," Addictions, Vol. 16, No. 4, 1969. pp. 26-43.

24 Crancer, A., J. Dille, J. Delay, J. Wallace and M. Haykin, "Comparison of the effects of marihuana and alcohol on simulated driving performance," Science, Vo1. 164, 16 May 1969, pp. 851-854.

25 McGlothlin, W.H., The uses and effects of Cannabis, Report prepared for the National Commission on Marihuana and Dangerous Drugs, 124 pages, 1971.

26 Hochman, J.L., and N.Q. Brill, Marijuana use and psychosocial adaption, Paper delivered at American Psychiatric Association Meeting in Washington, D.C., 3 May 1971.

27 Johnson, B.D., Social determinants of the use of "dangerous drugs" by college students. Doctoral Thesis, Columbia University, June 1971.

28 Crancer, A., and D.L. Quiring, "Driving records of persons arrested for illegal drug use," Police, in press.

29 Haines, L., and W. Green, "Marijuana use patterns," Brit. J. of Addiction, Vol. 65, No. 4, 1970, pp. 347362 .

30 McGlothlin, W.H., et al., "Marijuana use among adults," Psychiatry, Vol. 33, No. 4, 1970, pp. 433-443.

31 Moskowitz, H.A., et al., Institute of Transportation and Traffic Engineering, University of California, Los Angeles, unpublished data, 1971.

32 Dixon, W.J., Ed., BMD, Biomedical computer programs, University of California Press, Berkeley and Los Angeles, 1968.

33 Dixon, W.J.. Ed., BMD. Biomedical computer programs, X-Series supplement, University of California Press, Berkeley and Los Angeles, 1969.

34 Binder, A., "An experimental approach to driver evaluation using alcohol drinkers and marihuana smokers," Accident Analysis and Prevention, Vol. 3, 1971. pp. 237-256.

35 Adams, J.A.. "A closed-loop theory of motor learning," J. of Motor Behavior, Vol. 3, No. 2, June 1971, pp. 111-150.

36 Carlson, W.M., "Alcohol usage of the nighttime driver," Journal of Safety Research. Vol. 4, No. 1, March 1972. pp. 12-25.

## 8. APPENDICES

Appendix A. Experimental Participant Release

## SUBJECT CONSENT AND RELEASE FOR PSYCHOPHYSIOLOGICAL STUDY

I, the undersigned, agree and consent to participate in a scientific experiment designed to determine the effects of cannabis (marijuana) and alcohol intoxication. I understand that this experiment will be carried on in a psychophysiology laboratory located at UCLA and that appropriate legal approval has been obtained. I further understand that during the course of my participation in these studies I may be asked to smoke or drink substances which may or may not contain cannabis (marijuana) or alcohol and that, as a result, I may experience some degree of cannibis (marijuana) or alcohol intoxication.

I do hereby affirm that $I$ have read the above, and do release the State of California, UCLA, and those scientists and their assistants conducting these experiments from all liability of any ill effect which I may experience as a result of participation in this experiment.

Witness

Date

Subject

Date

Appendix B. Subject Interview Forms
$\qquad$

## interview

Nane $\qquad$

## Addresses

$\qquad$
Phone Numbers $\qquad$
Availability for experimental sessions: (dates, months)

Best days (5-hour duration)
Best hours free $\qquad$
Can you be availacle between 8 a.m. and 1 p.m. Yes $\qquad$ No $\qquad$

1. Age $\qquad$
2. Race. $\qquad$
3. Are you a student: Yes........ No

Health:
a. Have you ever had a sesious illness? Yes. $\qquad$ No Kind $\qquad$ When $\qquad$
b. Do you now have a sarious illness? Yes $\qquad$ No $\qquad$
Kind $\qquad$
C. Do you take any merication at prosent? les $\qquad$ : N $\qquad$
Kind $\qquad$
d. Have you ever hed a serious emocional illness? Yes_m_non No

Were you hospitalised; yes__ No _-...
a. Has anyone in your imuediate family been hospitalizeu for psychiatric reasons? Yes

No $\qquad$
f. Have you ever been in prychotherapy? Yes $\qquad$ No $\qquad$
9. Are you now in peychotherapy? yes $\qquad$ Ho $\qquad$
j, Consjraxing beer, wine and distilled liquor, about how many drinks do you average per sect?
i. Has there ever been a period wisen you averaged five or more drinks in one sitting, two or more tines a week? yes_ No_ No_ When was it?
Do you currently, on crecasior, have 5 or more drinks at one
sitting? Yes $\qquad$ No. ..._.....
How often? one a year or $13 s s$
2-11 times a year —
once a moitich $\qquad$
once a week $\qquad$
two or more times a week $\qquad$ -
7. Except for medically befiscribed use, have you ever used in the past or present, sedatives such as seconal, nembutal, phenobarbital. onridan, etc.? Yes__ No _

Regularly_
Fairly frequently $\qquad$
Cccasionaliy. $\qquad$
Rarely
3. Nucopt fox wesically proscribed use, have you ever used in the past or present, stimulants such as dexamyl, dexedrine, elavil, preludin, ritalin. etc, $\boldsymbol{z}$ les___no $\qquad$
天据 1 .
Tingly Ereguenciy -
occasional- $y$ $\qquad$
Rarely $\qquad$

1. Five you aver used montana\% Yea No. $\qquad$
Hashsuny Yeas $\qquad$ No. $\qquad$
When a td you fist use marijuana?
Have you lased marijuana 10 tomes or more? How often do you smoke it? Daily

Yes $\qquad$ 40 $\qquad$ 3-6 times per week
1-2 times per week_ i-4 times a month
less than once a month $\qquad$
Have you ever had a serious unfavorable reaction to marijuana?
Yes $\qquad$ No $\qquad$

Total
No. of No. of timer in
0. Have you ever Laken:

Yes No
Times last 12 months LSD

Other iqd; ?urinoctens Peyoie, meccalina, GMr: ace:

1. Grade pion average jn college $\qquad$ :
 drugs matiquars mophetaikes, tranquilizers, etc.j, alconol O. a monasce\% of extes ens alcohos? Yes_ No (Apprywtet iog bpyroral has been obtoined for all experiments in diach you would ie asiced ro participate.

Appendix C. General Information Sheet and Treatment Data Sheet

# GENERAL INFORMATION SHEET - DRIVING SIMULATION LABORATORY 

SUBJJECT CODEDATE
ADDRESS CARD
NAME: $\qquad$
$\square$ (First)
ADDRESS: $\qquad$
CITY:

PIIONE: $\qquad$ CAL. DR. LICENSE:

## FILM CARD



| SLX | AGE |
| :--- | :--- |
| SIMUL $\Lambda$ TOR | YES |

H:XPERTMENTER
PROJECTIONIST
CONTROLLER $\qquad$

## ISTON INPORMATION



TRIVING FXPERIENCE
DRIVER $\qquad$ NON-DRIVER

YEARS DRIVEN
MILES PER YEAR
PERCENT URBAN DRIVING
CAR MAKE $\qquad$ MODEL $\xrightarrow{\square}$ YEAR

TRANSMISSION:STD. $\qquad$ STEERING : STD
POWER BRAKES:STD.__ POWER AUTO. $\qquad$
$\qquad$
TMMESS INFORMATION

CAR
CTNERAMA
SIAS ICK
AIRS ICK
SWINGS
ROLLERCOASTERS
EYESTRAIN
FLU, ETC.
EATING
DRTNK ING
OMIIER
NO PAST HISTORY
REACIION TO DSL


Subject Name $\qquad$ Subject Number Date

Session
Body Welight
Pulse
Treotment
Alcohol/Extram Consumed
Consumption Started
Ended

Smoke Started
Ended
Pulse
Blood Alcohol
Time

Pulse
Blood Alcohol
Time

OSL Started

Pulse
Blood Alcohol
Time
Number of Hours Since Last Consumed Solids and/or Bevereges

During the past week have you:
Consumed any Alcoholle Beverages (az.) $\qquad$ I_
-Taken ony Drugs (pynscription/otherl No_Yes_
$\qquad$

$$
\begin{aligned}
& T \text { T } 7 \text { T } 5 \\
& \text { ד 7 7 ד } \quad 7707 \\
& \text { T2 } \\
& \text { T3 TK TS } \\
& 76717 \\
& 79 \\
& 20 \text { 21 22 } \\
& 723 \text { 24: } 25 \\
& \text { 27 } 28 \text { : } 29 \text { 30 } \\
& -31-32: 33-34 \\
& -35-36: 37 \cdot 38 \\
& -39 \text { - } 40 \text { T } \\
& \text { - } 42-43-44 \\
& 75-46^{\circ}-47 \text { 78 } \\
& 79-50 \quad 5 T \\
& \text { - } 52 \text { 53 } 54 \\
& { }_{55} \text {-56: } 57 \text { 58 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 63 } 64 \text { 65 } \\
& \text { - }-66 \quad 67 \text { } \mathbf{6 8} \\
& 7670 \text {-7 } 72
\end{aligned}
$$

$$
7 \frac{1}{3} 74
$$

757677

Appendix D. Short Drug Effects Questionnaire



Appendix E. Long Drug Effects Questionnaire

These are some questions about how you have been feeling. Please indicate how you have been feeling since you took the drug. For example, you will be asked if your head felt lighter -- if it felt lighter than it usually feels, say yes for lighter. Then you will be asked if it felt heavier -- if it felt heavier than it usually feels, say yes for heavier. If if felt neither lighter nor heavier but the same as usual, say no for both.

Some of these questions will have meaning for you and others may not. We use this same list to see the effects of a muber of different drugs on many different people. Just answer these as well as you can in terms of how you felt as compared with the way you usually feel.









74. Did you feel. like a different person

as if you were in a diream
controlled by something outside of yourself.
75. Did you notice the passing of time, more than you
usually do
less than you
usually do
76. Dió you, have a better sense of time
lose your sense of time
77. Did time seem to be going, faster
slower
78. Did you like answering these questions?
79. Did you dislike answering these questions?

80. Do you thint this drug was:

81. Was this experience pleasant?
if yes, somewhat__ very_
Yes No

$$
-\overline{39}
$$

Yes No

$$
-40
$$

82. Was this experience unpleasant?

if yes, somewhat
$\qquad$
very $\qquad$
83. Were you physically uncomfortable?
if yes, somewhat

$\qquad$
very___
84. Were you physically comportable?
if yes, somewhat_ $\quad /$ ..... very_

What drug do you think you have taken?

What do you think you have had to drink?


Please compare the strength of what you have been getting to what you have used in the past.

Drug:
 about the same weaker $\qquad$

Drink:
This was stronger $\qquad$ about the same $\qquad$ weaker $\qquad$

How intoxicated do you feel?
Not at all
Slightly
Moderately


Very

## CONEIDENTIEI

All information in this questionnaire will be held confidential. Please answer each question carefully. Your cooperation is greatly appreciated.

PLEASE PLACE A CHECK（ $($ ）NEXT TO TEE ANSWER THAT TS CORRECT TOR YOU．

1．Race or Ethnic Group：
1）Caucasian
2）Mexican－American
3） $\operatorname{Negro}$
4）Oriental
5）AmericanmIndian
6）Other
2．Until you were 16 years old，with whom did you live most of the time？
3）both parents
2）one parent
3）relative（s）
4）guardian（a）
5）orphanage or other institution
6）other
（specify）
3．If you did not live with both parents most of the time，was the reason：

1）divorce or separation
2）one parent died
3）both parents died
4）court order
5）father not at home
6）other
（specify）
4．Before you were in，how often were you punished for doing wing；
1．）often
2）once in a while
3）seldom
4）never
5．How would you describe your childhood？
1）happy
2）unhappy
3）sometimes happy and sometimes unhappy
4）other
（opecify）
6．What was your father＇s occupation $\qquad$
Describe his work． $\qquad$
$\qquad$
7. What is your occupation and job titie?

Describe the work you do? (briefly) $\qquad$
$\qquad$
8. How many jobs did you have prior to your enlisement?
one to two jobs (1)
three to four (2)
five to six (3)
more than six (4)
9. How much do you like your present job?
_-1) a lot
2) some
3) Very little
4) not at all
1.0. How much stress and strain is thexe in your present job?

1) a lot
2) some
3) very lictle
4) not at al.1
11. What is the total yearly salary?
1) leas than $\$ 3000$
2) above $\$ 3000^{\circ}-\$ 6000$
3) above $\$ 6000$ - less $\$ 9000$
4) above $\$ 9000$ ~ less $\$ 12,000$
5) don't know
12. Nue you presently single, married, divorced or widowed?
1) maxxied
2) separated
3) divorced
4) wi.cowed
5) conmon-law
6) never married
13. How fax were you able to go in achool?
1) between grades 1 \& 6
2) between grades $7 \& 9$
3) between grades $10 \& 12$
4) received a high school diploma
5) had some college
6) received a bachelor's degxee
7) completed graduate school
8) have a professional degree of some type
1.4. Mow often do you drive a car?
9) three or moxe times a day
10) daily
11) several times a week
12) on the average once a week or less often
25. When you drive on the average how many milea per day do you usually travel?
$-20-2 \pi$
26. What is the average number of hours you drive during daytirne?
1) lees than one houx
2) one hour
3) two hours
4) three hours
5) more than three hours
6) don't travel during daytime
17. What is the average number of hours you drive at nighttime?
1) less than one hour
2) onn hour
3) two hours
4) three hours
5) more than three hours
6) don't travel during nightitime
18. What type of roadway do you drive most on during weekdaye?
1) freewaya
2) Bmall city etreats (mostily stop situms)
3) lasce city atroets (mostly signal Lighta)
4) small. country roads
5) stiate higliways (not freeways)
6) don't drive on weekdays
19. Winat type of roadway do you drive most on during wegisenas?
1) freeways
2) small city streets (mostly stop signs)
3) large city otreets (mostly aignal iights)
4) omall country roads
5) state lighways (not freeways)
6) don't drive on weekends
20. In general, how often do you drive your car while you are angry or upset?
1) daily
2) several times a week
3) once a week
4) every two weeks
5) once month or less often
6) never
23. How often does driving itself upset you?
1) Often
2) sometimes
3) raxely
4) never
22. How does getting angxy or upset affect your driving?
1.) may not drive as woll as usual
2) may dxive just the same as usual
3) may drive bettex than usual
4) don't drive when upset
23. How often do you drive around in youx car to blow-off steam?
1) often
2) sometimes
3) rarely
4) never
24. How often do you like to drive fast?
1) oftem
2) sonetimes
3) rarely
4) naver
25. Which one of these statements best describes your car?
1) it's only a means of tranepoxtation
2) it represents the type of person I am
3) it is a necessity but a pain in the neck
4) a source of pleasure as weil as transportation
5) other
(specify)
6) don't own a cax
26. How many accidents wexe you involved in during your lifetime when you were the driver?
27. How many of these do you thinic were largely your fault, no matter how they were actualiy reported?
28. How many of these accidents caused an overall damage of $\$ 300$ or mox:e? $\qquad$
29. How many of these accidents were very minor accidents (small dents under $\{250$ )?
30. how did your last acrident occur?
1) my mind was on something else, didn't see in time
2) the other car caused it
3) something eise caused it (an uninvolved car, a pergon crossing street, etc.)
4) I fell asleep
5) other
(specify)
6) mechanical problems (such as brakea)
7) drove careleasly
8) had been drinking at the time
9) never in an accident
37. What type of driving habita do you have that could lead to an acciaenca
1) you sometimes speed
2) your inind wanders
3) you often follow a car too clogely
4) you often take your oyes off the road
5) you sometimes run stop signs or light signals
6) you often drive after taking a drink
7) othex
8) none that you are aware of

## 32. Dic any of the following events occur before your last accicent? (please check each statement)

|  | Yes | Yes |
| :--- | :--- | :--- |
| Yes A week A month |  |  |
| A Week to a | to Two |  |
| Before Month Monthe No |  |  |

i. Bugagement or marriage
2. New xesponsibility or tasks at work or school.
3. Now financial debt
4. Now baby or pregrancy


## Appendix G. Vehicle Control Scores

$\because \mathrm{ARTO}$

|  |  |  | （A） | （9） | 10 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| （f－7EST | ca | gTun－ | 0.19 | 0．29， |  | ． 47 | 5. |
| （T－TESt | CR | 80ハ |  | 20. |  | 20 |  |

## PLA／PL <br> ICGRUP：

12 SU8S

| MEAN | STD DEV | $M E A N$ | STD DEV | MEAN | STO DEV | c | 516 | $T$ | S 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28.335 | 5.656 | 24.290 | 9.020 | 4.096 | 11.567 | 0.55 | c． | 1.16 | 0. |
| 7.408 | 3.442 | 7.830 | 4.055 | －0．421 | 5.778 | 0.72 | 0. | －0．24 | 0. |
| 21.645 | 3.270 | 21.305 | 4.297 | 0.340 | 6.100 | 0.58 | 0. | 0.17 | 0. |
| 0.821 | 2.482 | 2.649 | 4.550 | －1．0．28 | 5.53 .7 | 0.30 | 0. | －1．10 | 0. |
| 9.924 | 1.373 | 10.318 | 1.629 | －0．304 | 2.13 .4 | 0.71 | 0. | －0．6才 | 0. |
| 3.554 | 1.600 | 2.917 | 0.498 | 0.637 | 1.410 | 10.32 | 0.01 | 1.50 | 0. |
| 0.385 | 0.297 | 0.438 | 0.509 | －0．053 | 0.596 | 0.33 | 0. | －0．30 | 0. |
| 0.108 | 0.074 | 0.105 | 0.097 | 0.004 | 0.105 | 0.58 | 0. | 0.12 | 0. |
| 10.583 | 12.433 | 4.833 | 4.200 | 5.750 | 11.395 | 8.76 | 0.01 | 1.67 | 0. |
| 20.557 | 17.497 | 30.146 | 33.435 | －9．479 | 42.053 | 0.34 | 0. | －0．73 | 0. |
| －29．281 | 19.904 | －33．636 | 20.064 | 4.355 | 14.977 | 0.98 | C． | 0.96 | c． |
| 1.335 | 1.984 | 1.214 | 1.306 | 0.120 | 1.743 | 2.31 | 0. | 0.23 | 0. |
| 16.800 | 6.468 | 17.213 | 5.478 | －0．413 | 4.571 | 1.39 | 0. | －0．39 | 5. |
| 23.604 | 3.693 | 27.351 | 8.353 | －3．747 | 9.010 | 0.20 | －0．05 | －1．38 | 5. |
| －55．273 | 494.475 | 35.120 | 459.505 | －90．392 | 673.889 | 1.16 | 0. | －0．44 | 0. |
| 0.926 | 0.852 | 0.786 | 0.554 | 0.140 | 0.680 | 2.37 | C． | 0.71 | 0. |
| 0.309 | 0.152 | 0.259 | 0.076 | 0.049 | 0.143 | 3.96 | 0.05 | 1.15 | 0. |
| 42.725 | 18.605 | 106.695 | 181.879 | －63．971 | 181.130 | 0.01 | －0．01 | －1．17 | 0. |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －c． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| 0. | 0. | 0. | 0. | C． | 0. | －0． | －0． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | － 0 。 | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| 0. | － 0. | 0. | 0. | －0． | 0. | －0． | －0． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －2． | －9． | －C． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | － 0. | －0． |
| 1.060 | 0.278 | 2.125 | 0.495 | －0．164 | 0.516 | 0.32 | 0. | －5．89 | 0. |
| 0.639 | 2.226 | 0.786 | 0.322 | －0．146 | 0.432 | 0.49 | 0. | $-1.12$ | 0. |
| 404.627 | 114.031 | 456.066 | 103．090 | －51．438 | 111.548 | 1.22 | 0. | －1．53 | 0. |
| 317.432 | 84.586 | 339.188 | 88.138 | －21．756 | 76.395 | 0.92 | 0. | －0．94 | 0. |
| 497.583 | 91.097 | 402.833 | 155.432 | 3.750 | 104.434 | 0.34 | 0. | 0.05 | 0. |
| 49.200 | 4.790 | 46.033 | 5.375 | 2.765 | 8.011 | C． 79 | C． | 0.04 | 0. |
| 214.342 | 64.388 | 229.195 | 61.841 | $-14.853$ | 84.255 | 1.08 | c． | －0．5． 5 | C． |
| 163.383 | 42.843 | 163.156 | 41.977 | 0． 227 | 43.471 | 1.04 | C． | C． 02 | C． |
| 2906.000 | 465.278 | 3017.500 | 657.610 | －111．505 | 86F．：こ\％ | 0.49 | － | － 0.43 | 0 |
| 61514.000 | 3503.375 | 51409．000 | 2517.167 | 16.000 | 48.78 .751 | 1.93 | ¢． | C．ri | ？ |
| 65787．199 | 35E－．45 | CST8：．Es？ | 4000.235 | 5.312 |  | 0.53 | －． | C．： |  |
| ？．087 | C．042 | 1．825 | 0.034 | 5.002 | E．tat | $\therefore .56$ | ＝ | $\bigcirc: 9$ | $\bigcirc$ |

## DIFFERENCE <br> （CG－TG）

12 SUBS

SO（C）＝S）（T）MU（C）＝W：UT）




> AVE SPEED EURIUG THE CRIVE（MPH） S．D．JF SPEFD JUPIVG THE DRIVE（MDH） ETT SDU DUE IPG THE CPIVE（FLM FRMS／SEC） ミニEED REVS OF 5 HPH DER 25 FILM FRAMES EVE $\angle C C E L$ PRSITITN（PR CT DEPRESSED） S．D．DF $\triangle C E E L$ POSITION IPR CT DEPRESSEDIIS ECE FEVS OF 2 PPCT PFR 25 FILH FRAMES 17） \＆ここ EEVS CF 5 PRCT DER 25 FIIM FRAMES（8） ．．．CF FPK DRESSES NIPI：IG THE DPIVE レ．X DRESSURE DURI：iG PRK PRS（OR CT MAXI 19 AVEFASE STESRIVr，WHEFL PDSITION（OEGSI（II） LVE TIME PET STP FEVS OF 5 PR CT（SECSIII2） AVG DIF EETAEEM STR AND COVD（DFGS）（13） S．D．OF DIF BYTWEEN STR AND CNMD（DETSS）（14） M AX PATE OF CHG DF STFEPINO（DEGS／SEC）（15） STFER REVS OF 5 DEGS PER 25 FILM FRANES（I6J STEED PEVS OF 10 DFG PER 25 FILM FRAMESIIT） MAX TIME PET STA PEVS OF 5 DEGS（SECS）II8） EVS SIR RATE GOIMI IUTO CRVS（DEG／SEC）（19） EV TJM FPM STFT חF STR TO NAX STR（SFC）（20） AV SPO CHG D！IRINT 200 FT PEF TURN（MPH）（21） AVG SPD CHG DURING TURNS IMPHI AVG SPD CHG DURIAG TURNS IYPH）（22） LV SOD CHG DURING 200 FT $\triangle F T$ TURN（MPH）\｛23） TIM FDM ACC LET－UP TO STRT OF TRN \｛SECB（24） TIN FPM E：SD MF TRN TH ACC PRESS（SECSI（25） －VF rSE PESE PATE DUR DRV（DIT，UNITS）（26） ayi Dilft jf GSR RASE FATE IOIG UN／SECI（27） TOT Y．DF GSR REACTIINS DIBIING THE ORVI28） EVT，4AG OF F，SR DFACTICYS IDIF U：NITSI 129） AVT LENGTH OF RPFATHS（SECONDS） S．D．NF LENGTH OF GRFATHS ISECO：NDS EV．CEDTH NE RREATHS（NIG UNITS （JTH NO ROETHS（DIG UNS）（33） TOF NO．חF RPEATHS DIDIVG THE DRIVE（34） ETHS HHP FXH TIM ．LT．JNH TIM（PR CT）（35） EVE DRTH EEP／WID RATIO（DIG UNICNT IND）（36） SG OF RPTH NEP／WIO RAT SDIS UN／C：T INDJI37） IE：TTH OF ORIVF（SFCN：OS）

［39） i三：BF PTH GF CAR FGR DRV（EC FLM FEMS：14O） ＝－T：O OF EO FLM FAMS TO OEAL FLM FONS（41）

| $P L A / P L$ | $A L C / P L$ |
| :--- | ---: |
| $(C G P U P I$ | $(T G R U P)$ |

12 SuBS

MEAN STD DEV

ALC／PL
12 suss

DIFFEFENCE
（CG－TG）
125085

| MEAN | STD DEV | KEAN | STD DEV |
| :---: | :---: | :---: | :---: |
| 28.385 | 6.866 | 27.186 | 8．544 |
| 7.408 | 3.442 | 7.645 | 4.111 |
| 21.645 | 3.270 | 23.987 | 4.430 |
| 0.521 | 2.432 | 1.465 | 3．159 |
| 9.924 | 1.373 | 10.762 | 2.296 |
| 3.554 | 1.600 | 3.593 | 0.994 |
| 0.385 | 0.292 | 0.270 | 0.113 |
| C． 108 | 0.074 | 0.096 | 0.050 |
| 10.583 | 12.433 | 7.590 | 8.271 |
| 20.667 | 19.407 | 22.612 | 27.997 |
| －29．281 | 19.904 | －32．612 | 22.266 |
| 1.335 | 1.934 | 0.528 | 1.457 |
| 16.800 | 6.468 | 15.747 | 6.479 |
| 23.604 | 3.693 | 23．745 | 4.459 |
| －55．273 | 494.475 | 121．118 | 494.121 |
| 0.926 | 0.852 | 0.554 | 0.315 |
| － 0.309 | 0.152 | 0.228 | 0.055 |
| ． 42.725 | 18.605 | 42.596 | 20.244 |
| 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. |
| c． | 0. | $\ldots 0$. | 0. |
| 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. |
| 1.950 | 0.278 | 2.188 | 0.470 |
| C． 639 | 0.226 | 0.799 | 0.398 |
| 404.627 | 114.031 | 457.799 | 110.291 |
| 317.432 | 84.536 | 329.450 | 94.246 |
| 497.583 | 91.097 | 402.083 | 92.458 |
| 49.200 | 4.790 | 48.671 | 3.713 |
| 214.342 | 64.388 | 220.998 | 43.037 |
| 163.383 | 42.843 | 162.420 | 39.535 |
| 2906．000 | 465.278 | 2561．500 | 455.383 |
| 61514．000 | 3502.376 | $5 ¢ 40.533$ | 1263．949 |
| 657E7．259 | 36E4．4Et | $6 \pm \pm$ こ？．743 | 2234．921 |
| ：． 387 | O．042 | －． 571 | C． 036 |



| PLA／PL | EXT／PL |
| :--- | ---: |
| ICGRUPI | ITGRUPI |
| 12 SUBS | 12 SURS |



|  |  |  | （A） | （B） | （C） | （0） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TE－TEST | CR | POij | 0.19. | 0．29， | 3.47 | 5.321 |
| TT－TEST | CR | gouv | －3．11， | 2．20， | 2．20， | 3.111 |

SOD ST THE BEGINUING OF THE EVENT（KPHI （VIUUM END GF THE EVENT（MPH） LIVIYIM SPEFD DURING THE FVFNT（MPH） HEXIMIM SPEFD DIJRTVG THF EVFNT $Y$ YDH SOFFD FEVS OF 5 uPH PIR 25 FILM FRAOES \＆VEOATE SDESD DURIVG THE FVENT（MPH） AVG SPD DURI：AC THE EVENT（FLY FRMS／SEC）（7 EこE DEVS CF 7 FPCT PFR 25 FILM FRGUES（8） AE DEVS OF 5 POET DED 25 FILM FRAMES（9） TIWE TO $1 S T$ CTHPLETE ACC LFT－IP（SFCS）（10） $\therefore \because \quad \triangle C E E L$ POSITINA（PR CT NEPRESSFD）（11） JIV TN IST ACC LET－UD DE 3 PR CT（SECS．（12） HAX PajITION OF \＆CCFL（DR CT DFPRESSED\}\{13) I！ 4 CEM ACC LFT－UD TO IST ARK PRS（SEC）（14） TIU TO IST BR PRS FPM STRT OF EVT（SECIIIS） UAX AUT OF SRK PRESSURE（DA CT OF NAX）（IG） TIME TO DEP DIST IN EEEATHING（SECS）（IT） TIME TO WID DIST IN RREATHING（SFCS）（I8） AVERAGE EREATHITG RATE（BREATHS／SEC） SE？UEMCE NT．OF LAST MAN FVT MARKER TIXE DF LAST MAN TVT HARKER（SECS） TIMF AT THF EFGIN＊ITIS OF FVT（SECS） TINE AT THE FND NF FVT（SECS） LEVSTH DF THE FVENT（SECDNDS） LEVGTH OF THE EVENT \｛FILM FRAMESI GSZ QASE DATEFDD THE FVFNT（DIS UNITSI 125 TIME TO A TISR CHE OF THE STD AMT SSECSII TI TINF Tत THE MAXTMIM．GCR CHAVGE（SECSJ（2 Max TSR HE MAXI WIJMGSR CHANOE（SECS） 128 （2）CHR DUPINT，THE EVT IDIG UNITS）（29） GVE POSITION DF THE STR HHL（DESS） LVG RATE OF CHG OF STR WHL（DFG／SEC TVE TO BFE NE STF INTO A THRN（SECS）（32 WEX SIR RATE GOING IVTO TURN（OEG／SEC）（33） WEX THRN DF THE STR WHI IDESSS uEx STE RATE CTMINT，DIJT OF TUPN（DT，ISCII35） STEER REVS GF 5 OFFS DER 25 FILM FRAMES（35） STEER REVS DF 10 DEG PFR 25 FILH FRAUES（37） SYECP REVS DF 15 DES PER 25 FILM FDGNES（3R） LEV＝DTH OF（LQ IV EVT（ES FLY FRMS）（39） 2IIT JF FO FLM FPUS TO FFAL FLM FZUS 1403



12 SUBS

| MEAN | STO DEV | MEAN | STD DEV |
| :---: | :---: | :---: | :---: |
| 26．925 | 7.042 | 21.537 | 7.969 |
| 26.881 | 7.288 | － 20.847 | 8.180 |
| 21.539 | 8.023 | 14.258 | 9.222 |
| 34.330 | 8.009 | 34.675 | 10.770 |
| 0.813 | 2.545 | 1.803 | 2.613 |
| 27.004 | 7.024 | 21.331 | 7.823 |
| 22.347 | 3.954 | 21.723 | 3.792 |
| 0.336 | 0.290 | －0．537 | 0.559 |
| 0.094 | 0.074 | 0.098 | 0.096 |
| 0.583 | 0.602 | 0.609 | 0.932 |
| 9.811 | 1.702 | 9.476 | 1． 244 |
| 2.592 | 0.516 | 2.714 | 0.746 |
| 14.529 | 3.554 | 13.465 | 2.190 |
| 0.055 | 0.148 | 0.035 | 0.261 |
| 0.490 | 0.601 | 0.696 | 0.730 |
| 5.305 | 4.189 | 8.415 | 10.452 |
| 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. |
| 0.493 | 0.058 | 0.459 | 0.082 |
| 124.533 | 98.529 | 128.136 | 70.947 |
| 1231．378 | 175.851 | 1334.477 | 237.636 |
| 1270.278 | 174.974 | 1401.766 | 267.065 |
| 1225.470 | 176.733 | 1417.588 | 269.813 |
| 15.192 | 2.249 | 15.822 | 3.394 |
| 314.578 | 8.537 | 315.263 | 8.775 |
| 0. | － 0. | 0 ． | 0. |
| 0. | 0. | $0 \cdot$ | 0. |
| 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. |
| －31．427 | 21.135 | －29．162 | 11.469 |
| 156.890 | 27.833 | 160.077 | 31.703 |
| 0. | 0. | 0. | 0 ． |
| 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. |
| 2.257 | 1.627 | 1.454 | 1.406 |
| 0.355 | 0.161 | 0.392 | 0.242 |
| 0.242 | 0.077 | 0.234 | 0.093 |
| 348．249 | 12.945 | 247．239 | 24.871 |
| 1.115 | 5．03： | 1.106 | 0.035 |
| 53.038 | － 23.203 | 47.692 | 15.236 |
| －9．0． 014 | 87．：55 | $-23.473$ | 21.424 |

DIFFERENCE
ICG－TGI
12 SURS

SMK／PL
（TGRUP）
12 SUBS

| MEAN | STD EEV |
| :---: | :---: |
| 5.338 | 10.771 |
| 6.034 | 11.523 |
| 7.281 | 13.267 |
| －0．345 | 12.500 |
| －0．991 | 4.010 |
| 5.573 | 10.476 |
| 0.624 | 4.159 |
| －0．151 | 0.556 |
| －0．003 | 0.111 |
| －0．026 | 0.731 |
| 0.335 | 2.506 |
| －0．022 | 1.036 |
| 1.064 | 4.653 |
| 0.019 | 0.292 |
| －0．206 | 0.8 .85 |
| －3．109 | 11.649 |
| 0. | 0. |
| 0. | 0. |
| 0.035 | 0.127 |
| －3．603 | 115.256 |
| －103．099 | 372.221 |
| －131．488 | 335.971 |
| －132．119 | 338.466 |
| －0．631 | 2.745 |
| －0．685 | 1.132 |
| 0. | 0. |
| 0. | 0. |
| 0. | 0. |
| D． | 0. |
| －2．265 | 16.886 |
| －3．188 | 32.009 |
| 0. | 0. |
| 0. | 0. |
| 0. | 0. |
| 0. | 0. |
| －0．197 | 1.624 |
| －0．035 | 0.219 |
| 0.008 | 0.102 |
| 1.510 | 11．0\％5 |
| 0.000 | C．ここ6 |
| 5． 346 | ：4．こく5 |
| 14.559 | 45.625 |

－－－FTEST－－－－ーiTESi－～－ YUL KYEJTH NULL KYPJTH SD（C）＝SO（T）w：U（C）＝MU（T）


| PLA/PL | ALE/PL |
| :--- | ---: |
| CGSUP | TSEUP |
| 12 SUBS | 12 SUBS |





PLA／PL
EORUPI
ALC／EX
（TGRUP）
il SUBS

| MEAN | STD DEV | MEAN | STD DEV | MEAN | STD DEV | $F$ | S1G | T | SIG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23.653 | 7.458 | 27．209 | 5.563 | －3．556 | 0.354 | 1.52 | 0. | －1． 20 | 0. |
| 23.519 | 7.565 | 26.869 | 5.542 | －3．350 | 9.358 | 1.85 | 5. | $-1.12$ | 0. |
| 17.873 | 9.395 | 21.989 | 5.265 | －4．096 | 11.658 | 3.18 | c． | －1．11 | 0. |
| 33.959 | 9.193 | 31.374 | 6.430 | 2.586 | 7.151 | 2.01 | $\cdots$ | 1.14 | 0. |
| 1.005 | 2.605 | 0.044 | 0.036 | 0.951 | 2.598 | 25.31 | 0.01 | 1.17 | 0. |
| 23.359 | 7.801 | 26．959 | 5.657 | －3．600 | 9.699 | 1.90 | 0. | －1．17 | 0. |
| 22.133 | 3.375 | 23.536 | 4.027 | －1．402 | 4.599 | 0.71 | 0. | －0．96 | 0. |
| 0.307 | C． 239 | 0.173 | 0.119 | 0.134 | 0.254 | 4.04 | 0.05 | 1.61 | 0. |
| C． 0.68 | 0.061 | 0.043 | 0.035 | 0.026 | 0.051 | 3.02 | 0. | 1.33 | 0. |
| 0.003 | 0.821 | 0.926 | 0.792 | －0．022 | 0.892 | 1.02 | 0. | －0．08 | 0. |
| 8.462 | 2.543 | 7.316 | 2.867 | 0.646 | 3.458 | 0.79 | 0. | 0.59 | 0. |
| 2.363 | 0.569 | 1.856 | 0.708 | 0.507 | 0.902 | 0.65 | 0. | 1.67 | 0. |
| 12.834 | 3.925 | 11.289 | 3.911 | 1.545 | 4.732 | 1.01 | 0. | 1.03 | 0. |
| 0.009 | 0.182 | －0．046 | 0.190 | 0.055 | 0.290 | 0.92 | 0. | 0.60 | 0. |
| C． 452 | 0.566 | 0.303 | 0.529 | 0． 142 | ． 0.598 | 1.15 | 0. | C． 75 | 0. |
| 5.192 | 5.641 | 4.325 | 6.212 | 0.857 | 6.270 | 0.82 | C． | 0.44 | 0. |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| 0.473 | 0.092 | 0.498 | 0.038 | －0．025 | 0.104 | 5.93 | 0.01 | －0．77 | 0. |
| 120.777 | 99.102 | 86.608 | 59.319 | 34.169 | 129.773 | 2.79 | 0. | 0.83 | 0. |
| 1209.895 | 198．586 | 1167．259 | 320.175 | 42.626 | 224．217 | 0.36 | 0. | 0.50 | 0. |
| 124 R .489 | 200．258 | 1225．320 | 263.870 | 22.159 | 190.746 | 0.58 | 0. | 0.37 | 0. |
| 1263.183 | 202.206 | 1240.160 | 265.896 | 23.023 | 192.744 | 0.58 | 0. | 0.38 | 0. |
| 14.694 | 2.226 | 13.840 | 2.576 | 0.854 | 2.490 | 0.75 | 0. | 1.09 | 0. |
| 307.783 | 13.915 | 308.018 | 14.093 | －0．235 | 0.579 | 0.97 | 0. | －1．09 | 0. |
| 0. | 0. | C． | 0. | 0. | － 0. | －0． | －9． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －3． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| C． | 0. | 0. | 0. | 0. | 0. | －0． | －3． | －0． | －0． |
| $-31.206$ | 27.049 | －34．267 | 28.159 | 3.061 | 17.566 | 0.92 | 0. | 0.55 | 0. |
| 173.385 | 33.912 | 172.385 | 29．526 | 1.000 | 29.227 | 1.32 | 0. | 0.11 | 0. |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －2． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －5． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | － 5 | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －5． | －0． | －0． |
| 1.856 | 2.076 | 1.417 | 1.554 | 0.449 | 1.557 | 1.76 | 0. | 0.91 | 0. |
| － 2.451 | 0.299 | 0.331 | 0.206 | 0.120 | 0.348 | 2.11 | 3. | 1.09 | 0. |
| C． 276 | 0.108 | 0.199 | 0.073 | 0.077 | 0.113 | 2.18 | $\because$ | 2.16 | 0. |
| 345.245 | 21.725 | 347.274 | 17.069 | －2．029 | 12.746 | 1．30 | $\therefore$－ | $-6.02$ | 0. |
| 1． 130 | 0.742 | 1.132 | 0.026 | －－．072 | C．$=29$ | 2． 57 | $\bigcirc$ | －－． 13 | 0. |
| 50.284 | 17．4：2 | $45=5.51$ | 12.540 | －7．357 | 15．5シ5 | 1.93 | $\therefore$ | －：．＜0 | こ。 |
| E． 0.62 | 55.112 | $2 \div .2 こ 5$ | 105.553 | $-25.003$ | 57．579 | 2．E： | $\therefore$ 。 | －：$: 3$ | ご |


|  |  | $\begin{aligned} & \text { DL/PPL } \\ & \text { (CGRUP) } \\ & 8 \text { SUBS } \end{aligned}$ |  |  | $/ P_{L}$ RUP） SUBS | $\begin{gathered} \text { DIFFERENCE } \\ \text { (CG-TG) } \end{gathered}$ |  | $\begin{aligned} & \cdots F T E S: \cdots \\ & \text { YUL } H Y=こ: H \\ & S D(C)=S D: T) \end{aligned}$ |  | $\begin{aligned} & - \text {-TTEST~ }^{\text {NHL HYPGTU }} \\ & \text { NUEJ=WU(T) } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NEAN | STD DEV | MEAN | STD DEV | MEAN | STD DEV | $F$ | S1G | 1 | S18． |
|  | EVC．SFEEN DUPTNT，THE DFIVE（MPH）（1） | 40.598 | 9.033 | 42.800 | 4.8 .48 | $-2.20 .2$ | 10.571 | 3.47 | c． | －0．55 | 0. |
|  | S．D．DF SPEED DUPISi，THE DRIVE（MPH）（2） | 8.646 | 2.197 | 8.952 | 2.174 | －0．206 | 2.496 | 1.01 | 0. | －0．32 | 0. |
|  | AVS SPD DURINS THE DPIVE（FLM FRMS／SEC）（3） | 22.713 | 3.188 | 24.830 | 2.779 | －2．116 | 3.120 | 1.32 | C． | －1．37 |  |
|  | SPESD REVS AF 5 MPH PEP 25 FILM FFAMES（4） | 0.030 | 0.014 | 0.030 | 0.017 | 0.001 | 0.610 | 0.66 | 0. | 0.19 | 0. |
|  |  | 11.188 | 1.003 | 11.945 | 0.627 | $-0.757$ | 0.763 | 2.56 | C． | －2． 62 | －0．c5 |
|  | 5．3．OF CCCEL POSITICN（PR CT DEPRESSED）（6） | 2.751 | 0.765 | 3.399 | 0.644 | －0．647 | C． 763 | 1.41 | 2． | －2． 24 | 0 |
|  | 2E5 PEVS חF 2 PFCT DFF 25 FILM FFAMES（7） | 0.271 | 0.202 | 0.357 | 0.102 | －0．086 | 0.220 | 3.97 | 0. | －1．${ }^{\text {c }}$ | 0. |
|  | ：ここ REVS HF 5 PLCT PEP 25 FILM FRAMES（8） | 0.0 .67 | 0.071 | 0.113 | 0.053 | －0．026 | 0.045 | 1.80 | 0. | －1．57 | 0 |
|  | N？．OF BLK PPESSES DUAINS THE DRIVE（9） | 6.875 | 20.517 | 5.250 | 5.717 | ． 1.625 | 6.363 | 3.38 | 0. | 0.68 | 0. |
|  | HAX PRESSURE DIJPING YLK PRS（PD CT MAX）（10） | 6.156 | 5.244 | 5.662 | 4.684 | 2.494 | 5.735 | 1.25 | 0. | 1.15 | 0. |
|  | \＆VEAGTE STEFRI？R，WHEEL PRSITION（DEGS）（11） | －20．921 | 1.832 | －24．137 | 1.722 | 3.217 | 2.439 | 1.13 | 0. | 3.49 | 0.05 |
|  | LVS TIUE BET STR REVS OF 5 PP CT（SECSIII2） | －1．019 | 2.041 | －0．618 | 1.361 | 0.201 | 2.655 | 2.25 | 9. | 0.40 | 0. |
|  | AVG DIF BETATE：STR AN：D COUP（DEGS．）（13） | 9.717 | 3.172 | 9.378 | 1.264 | 0.338 | 2.716 | 6.30 | C．05 | 0.33 | 0 |
|  |  | 28.447 | 16.359 | 23.396 | 4.346 | 4.551 | 15.435 | 14.17 | 0.01 | 0.78 | 0. |
|  | UAX FATE Cf CHG Of STEER，IMG（DEGS／SEC）（15） | 357.176 | 300.759 | 4.538 | 492.266 | 352.638 | 476.028 | 0.37 | 0. | 1.95 | 0. |
|  | STEFR REVS OF 5 TFGS PCR 25 FILM FPAMES（16） | 0.603 | 0.479 | 0.662 | 0.573 | －0．059 | － 0.498 | 0.70 | 0. | －0．31 | 0. |
|  | STEER PEVS OF 10 DFE PER 25 FILM FRAMES（17） | 0.270 | 0.151 | 0.300 | 0.162 | －0．030 | 0.086 | 0.87 | c． | －0．93 | 0. |
| A | WAX TIME BFT STR REVS OF 5 DEGS（SECS）（18） | 123．508 | 227．187 | 44.485 | 28.120 | 79.022 | 234.612 | 65.28 | 0.01 | 0.89 | 0. |
| v | AVT，STR RATE FiJI：T，INTO CRVS（DEG／SEC）（19） | 0. | 0. | C． | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
|  | LV TIU FRU STPT IF STP TH MAX STR（SECICPO） | 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0 |
|  | LU SDC CHG SUPI：： 200 FT OEF TURN（MPH）121） | 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
|  | LY＇，SPD CHS，OUPINS，IUPHS（YPH）（22） | 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | 0 |
|  | AV SPD CHT，DIRI ：r， 230 FT $\triangle F T$ TURN（MPH）（23） | 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
|  | TIM FOM ATC LET－UP TO STRT TF TPN（SEC |  |  |  |  |  |  |  |  |  |  |
| （24）． |  | 0 | 0. | 0. | 0. | $-\quad 0 .$ | －0． | －0． | －0． | －0． |  |
|  | TIN FRY TVD OF TRN TO LCC PFESS（SECS）（25） | 0. | 0. | 0. | 0. | 0. | 0. | －0． | －6． | －0． | 0. |
|  | LVT．RSA RASE RATE DUR DOV（DIT，UVITS）（26） | 0. | 0. | $0=$ | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
|  | 2V＇S DOIFT OF GSO PASE PATE（IIG UN／SEC）（27）． | 0. | 0. | 0. |  | 0. | 0 |  | 0. | －0． | －0． |
|  | TGT PIR．OF r，SR RFACTIINS DURING THE ORV（29） | C． | 0. | 0. | 0. | 0. | 0. | －0． | －c． | －0． | －0． |
|  | LV＇S MST，OF GSP PEACTIT：S（JIT，U：UTS）（29） | 0. | 0. | 0. | 0. | 0. | 0. | －0． | －c． | －0． | －0． |
|  | LUJ LEiAGTH OF BFEATHS（SECO：DSS（30）． | 1.744 | $-0.673$ | 1.751 | － 0.683 | －0．006 | 0.935 | 0.97 | 0. | －0．02 | 0. |
|  | S．- －CF LFQtTH DF SREATUS（SFCONOS）（31） | 0.614 | 0.254 | C． 570 | 0.222 | 0.043 | 0.371 | 1.31 | 0. | 0.32 | 0. |
|  | 2VT DEPTH GF HRFATHS（UIT U＇IITSI（32） | 434.505 | 207．287 | 243.420 | 153.157 | 194.084 | 312.072 | 1.74 | 0. | 1.64 | 0. |
|  | S．O．DF DEPTH OF GPCATHS（UIG UiNITS）（33） | 406.166 | －． 170.821 | 273.928. | 222.628 | 132.238 | 363.787 | 0.59 | c． | 0.96 | 0. |
|  | THT HN．OF RRFATHS רIFI：AT，THE DPIVE 3341 | 387.250 | 151.342 | $358.250^{\circ}$ | 149.729 | 29.000 | 245.624 | 1.02 | $c$ | 0． 31 | 0. |
|  | ：＝THS KHR EXH TIM－LT．TVH TIM（PR CT）（35） | 44.431 | 17.194 | 42.656 | 16.322 | 1.775 | 23.549 | 1.11 | 0. | 0.20 | 0. |
|  | AVG 3KTH DEP／ald Patin（！IG UN／CNY IND）（36） | 222.460 | 100.750 | 122．741 | 82.493 | 97.719 | 165.115 | 1.49 | C． | 1.57 | 0. |
|  |  | 204．40．5 | 85．550 | 145.111 | 120.500 | 61.376 | 155． 15 | 0.52 | E． | C． 83 | c． |
|  | CVITH NF DEIVF（SFC？：OS）（38） | 277c．375 | 417.597 | 2405．125 | 282． 520 | $3 \pm 5.750$ | くつッ．ごい | 2．18 | $\bigcirc$ | 1．E4 | 0. |
|  | LE：STH UF DFIVE（EILYFP：VES）（30） | 61647.275 | 20ご，－ | 59125.375 | く5こら，ここ | こここのくてここ | $\therefore . \therefore$ ： | C．25 |  |  | － |
|  |  | 635E？．cड7 | 2175．5i | Sこここ：Efe | ムも：「．うこう | 20こ． | ب5：－－－ | $\because \because$ | $\bigcirc$ | $\cdots .52$ | $\cdots$ |
|  | Eatin jF EO FLM FAMS IJ FEAL FLY fRNS lail | 1.033 | 5.036 | 2．C33 | ¢．0．？ | C．500 | －．ここ | c． 74 | － | $\therefore .13$ | － |



$\square$

PL/PL
$C G R U O$
EL/OR

 SOEED PEVS OF 5 MPH PEF 25 FILM FPAM
AVS ACCEL POSITIMN IPR CT DEPRESSEDI S.D. CF ACCEL POSITION IPR.CT DEPRESSEOI(6) EE ZEVS OF 2 PFCT PFO 25 FILM FPAMES $\therefore$ 二E REVS CF 5 PRCT PER 25 FILA FRAMES :フ. CF BPK PRESSES DUPING THE DRIVE

| $(1)$ | 40 |
| :--- | ---: |
| $(2)$ | 22 |
| $(3)$ | 22 |
| $(4)$ | 0 |
| $(5)$ | 11 |
| $1(6)$ | 2 |
| $(7)$ | 0 |
| $(8)$ | 0 |
| $(9)$ | 6 | YAX PRESSUPE THEING BHK PRS (OR CT MAX) (10) AVERESE STEEPI:YG WHEEL DOSITISN (CNEGS) (II) AVE TIME BET STP REVS OF S PR CT (SFCSI(12)

AVG DIF BETHEEN SIR AND COYP (DEGS) LVG DIF BETWEEH STR AND CNYP (DEGS) S.D. TF DIF BFTHFEN SIP AMO COYP IDEGSI(14) MEX RATE OF CHG OF STEERING (DEGS/SEC) (15) STFER REVS OF 5 DEGS PER 25 FILM FRAMES(16) 35 STEER REVS DF 10 DEG PER 25 FILM FRAMES(II) MAX TIME RET STP REVS OF 5 DEGS (SECS) (28) AVE STR PATE GOING INTO CRVS (DEGISEC) (19) LV TIY FEN STRT OF STK TO IRXX STR (SECI(ZO) 2V SPD CHE DUPING 200 FT BEF TURN (MPH)(21) AVE SPO CHE DURIVG TUPNS (HPH) IV SPD CHE RURI: G 200 FT $\triangle F T$ TURN IYPH)(23) TIM FPM ACC LET-UP TD STPT UF TRN (SEC)(24) TIM FFM ENO CF TRN TO ACC PRESS (SECS) (25) AYF R,SN 3:SE PATE CUK DRV (i)IC UNITSI (26) AYE DRIFT OF GSD BASE PATE (DIG UN/SECI(27) TOT ㅂ․ OF GSR RFACTIITVS DURING THE DRVIZB) LVE MIS OF RSA PEACTIM:IS (DIG UNITS) LVS LENGTH OF BOEATHS (SECCNDS) S. 5. TE LFMrTH OE BREATHS (STCNNDS) A $\because$ G DEDTH TF HREATHS (DFT, UUIITSI S. $\because=$ OFITH OF BEEATHS (DIG UNITS) TBT NS. OF EREATHS BURI:NG THE DRIVE EETHS WHE EXH TIM -LT. INH TIN (PR CT) (35 EVF 3ETH JIP/AIO OATIO (DIG UN/CNT INDI(36) S2 'IF 4 QTH OTP/WIC RAT (DIG U:/CNT INOJI37) LE?TTH RE DFIVE ISECO:DSI


（A）（n）（C）（D）
PL／PL

（EGRUP）
8 SU2S
8 SU3S

AL／PL
（tGeup）
B suas

O！5F5天ENCE
（EG－TG）
8 SURS
 NULL H：゚こ！ SD（C）＝Sこ（T）WU（C）＝U（T）


$-0.57$
-0.57
$-0.5=$
0.50 ．
$-0.620$
$-0.130$
$-0.89 \quad 0$.
$-1.91 \quad 0$
$\begin{array}{ll}-1.99 & 0 . \\ -1.58 & \text { C．}\end{array}$
$-2.36 \quad 0$.
$-3.12-0 . c^{5}$
$-0.720$.
$-3.12-6.05$
$-0.250$
$-1.17 \quad 0$
0.91
$-0 . \quad-0$.
-0.08 －
$-0.64$
0.06
1.14
1.13
1.13
0.80
$-0.04$
$-0$.
1.53
1.13
－
$\qquad$
－
－

E．


（CG－IG）<br>8 SUBS

DIFFERETLE


＊：！l Hyz－<br>SD（Ci＝Sこ（T）$\because U(C)=N(T)$





## ますご





路
EVF SOEEO DURIVG THE NDIVE（KPM） S．ว．O＝SPEEO DUOIVE THE DRIVE（MOHI $\therefore \because 5$ ST DURIMF THE NDIVE（FiM FRMS／SEC） 5PEFS REVS TF 5 MPH PER 25 FILY FRSYES（4 SVJ ECEEL POSITINN（PR CT DEPRESSEDI S．J．OF $\triangle C C E L$ 2OSITICN PP2 CT DEPRFSSEDI \＆こ PEVS OF 2 PRCT PFR 25 FILM FPLMES（7） ムここ 2EVS AF 5 PRCT OFR 25 FILM FRAYES ＊CE ERK DOESSES DUVIVC THE DRIVE
 LVEPAJE STEEQIVG ZHEEL POSTTION（OESS）（II） ATV IIME BET STR REVS OF 5 PR CT（SECS）II2） A：T DIE RETMEEY STR AVC COYD（DEGSI S．7．DF OIF BETHEEN STR AND COMP（DEGS）（14 सaY RATE OF CHG OF STEEPING（NEGS／SEC）（15） S：EER REVS AF 5 OEGS PER 25 FILM FRAUES（15） SIEER REVS OF 10 DEG PER 25 FILM FRAHES（17） YミY TIUE EET STR KEVS OF 5 OEGS（SECS）I 18 \} AV：STR RATE GTI：UG INTO CRVS（NEG／SEC） 1191 2V TIM FAM STRT OF STR TO MAX STR（SEC）I2O） AV SDO CHG DURINT 200 FT REF TUZN（KPH） 21 ） AVE SPD CHE DUPIIS TUQ：NS（MPH）
（22） $\therefore V$ SPD CHG DURINS 200 FT $A F T$ TURN（KPH）（23） TIM FRY ACC LFT－UP TO STRT DF TRN（SEC）（24） TIM FDM EYJ CF TKN TO RCC PRESS（SECSI（25） AVJ TSR PASE PATE DUP DRV TDIG UNITS）（26） AJF חRIFT JF GSR EASE RATE（OIT UN／SFC）（27） THI SJ．DF GSR REACTINיS DURING THE DRV（28） AVF MAG OF GSR REACTICNS IDIG UNITS）（29 DI LEVGTH OF BRFATHS（SFCTNOS） S．T．חF LE！GTH OF BREATHS（SECJNDS）（31 QVE DEDTY DE BOEATHS \｛DIG UNITS） S．3．O＝OFPTH OF EREATHS（DIG UNITS）（33） TニT ↔コ．DF BRFATHS DURIYT，THE DRIVE（34） 22THS WH2 EXH TIM LT．I：SH TIM（PR CT）（35）
 ST तF RRTH DEDP／NID PAT \｛OIT UN／CNT INO） 37 LE：TH CE D2IVE（SECSHOSI



| $\begin{gathered} \alpha / P L \\ \{\hat{G}: \cup P\} \end{gathered}$ |
| :---: |
|  |  |

is SL：3S

| KEAN | STD DEV | MEAN | STO DEV | KEAV | STO DEV | $F$ | SIS | T | 516 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24.912 | 5.199 | 24.536 | － 3.601 | $\cdots 0.278$ | 5.0 .5 | 2.08 |  |  |  |
| 5.953 | 2.753 | 6.159 | 2.199 | －0．235 | 2.410 | 2.08 1.56 | C | 0.21 0.39 | 0. |
| 23.401 | 2.334 | 22.753 | 3.742 | 0.548 | 3.501 | 0．39 | 0. | 0.39 0.70 | c． |
| 0.250 | 0.839 | 0.038 | 0.020 | 0.212 | 0.537 | 13.67 | 0.01 | 0.98 | 0. |
| 7．954 | 6.230 | 7.605 | 6.050 | 0.359 | 8.517 | 1.06 | 0. | 0.16 | $0 \cdot$ |
| 2.558 | 1.079 | 3.531 | 1.754 | －0．863 | 1．587 | 0.38 | 0. | $-2.11$ | 0. |
| 0.159 | 0.111 | 0.237 | 0.214 | －0．079 | 0.185 | 0.27 | －5．05 | －1．54 | 0. |
| 0.040 | 0.033 | 0．0：\％ | 0.055 | －0．030 | 0.054 | 0.36 | 0. | －2．15 | －0． |
| 5.500 | 7.736 | 11.625 | 12.319 | －5．125 | 11.152 | 0.37 | 0. | －2．13 | 0. |
| 15.119 | 18.353 | 12.724 | 11.063 | 2.334 | 15.239 | 2.75 | 3. | 0.59 | 0. |
| －3．767 | 7.322 | －3．445 | 7.970 | －0．323 | 3.452 | 0.84 | 0. | －0．36 | 0. |
| 0．215 | 1.414 | 0.323 | 0.721 | －9．108 | 1.634 | 3.84 | 0.05 | －0．25 | 0. |
| 25.351 | 2.339 | 25.022 | 2.423 | 0.329 | 3.578 | 0.93 | 0. | 0.35 | 0. |
| 23.154 | 13.811 | 25.096 | 9.700 | －1．933 | 16.506 | 2.03 | 0. | －0．45 | 0. |
| 223.576 | 437.185 | 322.125 | 355.306 | －98．549 | 454.639 | 1.51 | 0. | －0．36 | 0. |
| 0.477 | 0.237 | 0.687 | 0.621 | －0．210 | 0.531 | 0.21 | －2． 01 | －1．45 | 0. |
| 0.224 | 0.125 | 0.299 | 0.171 | －0．075 | 0.132 | 5.53 | $\hat{*}$ | －2．19 | －0． |
| 61.108 | 75.053 | 114.230 | 201.598 | －53．122 | 221．228 | 0.14 | $-2.51$ | －0．93 | 0. |
| 0. | C． | D． | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －n． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | 0. |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －0． | －0． | －0 |
| 0. | 0. | 0. | 0. | D． | D． | －0． | －- | －0． | 5 |
| 0. | 0. | $0:$ | 0. | 0. | 0. | －0． | －0． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －3． | －0． | －0． |
| 0. | 0. | 0. | 0. | 0. | 0. | －0． | －3． | －0． | －0． |
| 2.882 | 0.311 | 1.965 | 0.090 | －0．083 | 0.316 | 11.93 | 2.01 | －1．02 | 0. |
| 0． 559 | 0.168 | 0.568 | 0.089 | －0．056 | 0.164 | 3.57 | 2.55 | －0．15 | 0. |
| 370.438 | 0.9 .175 | 365.991 | 65.982 | 4：447 | 99.814 | 1.87 | 0. | C． 17 | 0. |
| 253.745 | 130.257 | 252.592 | 68.623 | 1.153 | 112.809 | 3.80 | 2.05 | C． 04 | 0. |
| 453.937 | 85.455 | 467.125 | 86.895 | －13．187 | 236.620 | 0.97 | 0. | －0．37 | 2. |
| 44.794 | 7.127 | 47.651 | 3.645 | －2．957 | 8.898 | 3.82 | 0.05 | －1．60 | 0. |
| 203.402 | 40.899 | 192.372 | 35.980 | 11.030 | 45.559 | 1.29 | 3. | 0.94 | 0. |
| 143.075 | 64.256 | 145.393 | 34.703 | 2.581 | 57.151 | 3.43 | 5.05 | 0.18 | 0. |
| 2516．500 | 332.559 | 276：．375 | 453．347 | －244．875 | 535.583 | 0.51 | －－ | －1． 77 | C． |
| 52447．525 | $\leq 5=5.555$ | 61：65．457 | $1934.3 \geqslant 6$ | －27i ．E！2 | 55：－： 3 | 9.77 | こ．$=$ ？ | －1． 5 | E． |
| 685ご，518 | 6753．756 | く¢こここ．2\％7 | 2915．221 | －29：-7.5 |  | ！？．62 | －： | － | 2. |
| 2．230 | O．010 | i．135 | S．0：4 | 2．こころ | 2．315 | 0.55 | E． | ？．11 | E． |

CCOPILED EVENT STATISTICS EOR ADI SUBUECSS ACROSS EDT EVENMS



SつD AT THE REGIVAINT NF THE FVENT（HPH）（ SPJ AT TUE ENO OF THE EVENT（NOH）

111
121 H：UINJM SPEED DURING THE EVFNT（MPH） ＊EXIMJY SPEEO DURINT THE EVENT（HFH） SDEED REVS OF 5 MPH PEE 25 FILY FOAUES AVEP．AGE．SPEED OURING THE EVENT（MPH） ATY SOn DUPING THE EVFNT（FLM FFMS／SEC）（7） ニこ REVS $C=2$ PRCT DER 25 FILM FRAMES（8） ニこ REVS OF 5 PRCT PER 25 FILY FRAMES（9） TIUE TO IST COMPLFYE ACE LET－UP［SECS］（10） LVS ACEEL POSITICN（DP CT DEDRESSED）（II） IIY TO IST ACC LET－UP OF 3 PR CT（SECS．II2） MOX PJSITION OF ACCEL（PR CT DEDEESSEDIII3） TIM FRY ACE LCT－UP TO IST RRK POS（SEC）（14） TIM TO IST BR PRS FRY STRT OF EVT（SEC）（l5） H\＆\＆पT OF QRK PDESSUPF（PQ CT OF HAX）（IS） TIUETT REP DIST IA EREATHTVE（SECS）（I7） TIME TO WIO DIST IN EREATHING（SECS）（IB） Z甘EPACF SZEATHING PATE（ROEATHSSSEC） SEJJFVEE ND．$\cap$ LF LSST MAY EVT MAZKER TIUE DF LAST MEN EVT MAZKER（SECSI TIUE AT THE EEGIMNINT，OF FVT（SECS TINE AT THE ERD OF FVT（SFCS） LEVSTH GE THE EVENT（SECORDSI LENTH SF THE EVFNT（FILM FOAMES） TIME YO A GSR CHG OF THE STD AMT TIUE TJ THE MAXIN＇IM CSR CHANCE（SECSH）（27） ＊LX GSR CHI，DURINIT THE EVT IDIG UNITSI（29） EVS PISITIOM OF THE STR WHL IDESSI（30） EVF RATE OF CHE OF STF KHL（DETISCC）（31） TIUE T？3EG TF STR TVTO \＆TUP：（SETS）（32） －AX STR 2ATE COING INTO TUR：（DEG／SEC）（33） Wax TUZ： $0=$ THE STR WHL（DECSS）（34） UIX STR ZATE COMIHG NUT NE TURV（DC／SC）（35） ST＝ER ZF：＇S NF 5 DETS PER 25 FILY．FRAMESI3S） S：＝＝R 2EVS OF 10 OEG PER 25 FI（X FE：UESS（37） SiEER REVS OF 15 DET，DEO 25 F！L丩 FTA以ES（30）




| OJIPL | Cu／」4 |
| :---: | :---: |
| （CGE：P） | 1TERU？ |
| 16 Su゙3S | 15 SU3 |





OJiPL
(5. OUP)
If Su3s

ELE:AM
[TEAUD\}
16 SUBS



 it－iest c2 3JUv－－－2．95，2．13．2．13．2．95i

is suss


$\begin{array}{llll}111.455 & 7.354 & 115.135 & \text { E．439 }\end{array}$

DFFERENE
（CR－TGI
is SU95




5＝9 AT THE EETMNNINT，OF THE EVENT（YDH）（1）


 SOEED REVS D＝ 5 MPH PER 25 FIIK FRAMES

 ニこ RミVS $5=2$ OSCT PER 25 FILM FRAMES（8） ニこ REVS CO 5 PRCT PEQ 25 FIL FRAMES T：
 TIM TJ IST ACC LET－JP DE 3 PR CT ISECS．（II2） Yix DNS：TIO：OF ACCEL（PR CT DEDPESSEO）（13） T：ERY 的 LEI－JP TO 15T BEK PRS（SEC）（14） TIM TO IST ER PRS FRY STRT OF EVT（SECIKIS） Wax AMT OF SNK PPESSI；PE IPP CT OF सAXI（16） IIUE IO DEP OIST IN EREATHI：IG \｛SECSI（IT\} TIVE TO WIS DIST IN BJEATHIMG（SECSI AVF＝A！E FREATHING RATE（BRFATHS／SEC） SEこリミン： TIME OF LAST MAN EVT MARKER（SECS） TIME AT THE B＝GIMNING OF EVT（SECSS TIVE AT THE ENA NF EVT 15 SCSI LEVGTH DF THE EVERT（SECNQDS） LEVGTH DL THE EVENT（FI（M FDAVES） GST RSSE 2ATE FOR THE EVEVT ODIG UNITSI 125 IIME TO A GSR CHE OF THE STD AMT（SECS）（27） TIXE TO THE MAXIMUM GSQ CHANTE（SFCSI（28） ＊－X GSR（HT，OIIPIXG THE EVT（OIG UNITS）（29） 2v＇pJSITIOA OF THE STR YHL（DEGSI घコG RATE CF CHO DF STR WHL IOEF／SFC
 MAX STR RATE GOING TNTO THRN（DEG／SEC）（33） ※IX TURV OF THE STR HHL（DEGS） WIY STR RATE COMI：N CUT OF TURN IDG／SCI（3S1 STEER OEVS OF 5 DESS PER 25 FILM FRAMESI3SI S：ニER 2＝VS SF 10 DEG DER 25 FILK FR：！NESイ37）





（2）
（5）151
$(7)$（7）101（18）
（18）
$(27)$（21）（22）$(23)$
$(24)$271
281 9）
$x$
meas STO DEV

| $V$ | $F$ | SiG | $T$ | SIG |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 12.42 | C． 21 | 0.22 | 0. |
| 3 | 9.20 | C．？ | －3．42 | 0. |
| ＋ | 9.86 | C．ed | －2．：3 | 0. |
| 3 | 6.78 | 0.21 | 0.93 | 0. |
| 0 | 00.43 | C．01 | 0.80 | 0. |
| 2 | 9.74 | 2.01 | －0．11 | 0. |
| 0 | 1.21 | §． | 1.24 | 0. |
| 5 | 0.39 | c． | －2．44 | －0．05 |
| 1 | 0.41 | 0. | －2．54 | $-3.35$ |
| 4 | 0.51 | 0. | －1．83 | 0. |
| 9 | 0.92 | 2. | －0．31 | 0. |
| 1 | 0.79 | 0. | －1． 21 | 0. |
| 2 | 0.78 | 0. | －1．01 | 0. |
| 2 | 1.62 | 0. | 0.55 | 0. |
| 7 | 0.44 | 0. | －0．67 | 0. |
| 7 | 0.59 | 0. | －0．8．7 | 0. |
|  | －0． | －0． | －0． | －0． |
|  | －0． | －0． | －0． | －0． |
| 9 | 5.52 | 0.01 | 2.32 | 0.05 |
| 7 | 1.17 | 3. | 1.39 | 0. |
| 0 | 0.73 | 0. | 1.47 | 0. |
| 5 | 0.56 | 0. | 0.72 | 0. |
| 2 | 0.56 | 0. | 0.65 | 0. |
| 6 | 0.19 | －0．01 | －1．78 | 0. |
| 7 | 1.10 | 5. | 1.33 | 0. |
|  | －0． | －0． | －C． | －0． |
|  | －0． | －0． | －0． | －0． |
|  | －0． | －0． | －0． | －0． |
|  | －0． | －5． | －0． | －0． |
| 0 | 0.93 | 0. | 2．72 | 0.35 |
| 3 | 1.27 | 0. | 0.25 | 0. |
|  | －0． | －5． | －0． | －0． |
|  | －0． | －6． | －0． | －0． |
|  | －0． | －0． | －0． | －0． |
|  | －0． | －0． | －0． | －0． |
| 9 | 0.62 | c． | －C． 58 | 0. |
| 1 | 0.51 | $\stackrel{\rightharpoonup}{*}$ | －1．47 | 0. |
| － | 0.61 | ご | －2．17 | －0． 25 |
| － | 2.75 | こ。 | C． 2 | $こ$. |
| \％ | i． 07 | － | －．E5 | ¢。 |
| 2 | 1.24 | こ． | 2.54 | －5 |
| 8 | c．89 | $\because$ | －2．59 | － 2 － |

## Appendix H. Biomedical Computer Programs

# BMUX63 <br> MULTIVARIATE GENERAL LINEAR KYPOTHESIS 

## 1. (お:TH:UAL DESCRIPION

․ Thit program performa a multiple regresaion where the depeacient variable is a vector, it computes $U-s t a t i s t i c s ~ a n d a p r o x i m a t e ~ a r-~$ Matiatice to test hypotheses of the form $A \beta C^{\prime}=D$ where $\beta$ is a matrix of regrestion coefficiente and where $\Lambda, C$, and $D$ are matrices apecified by the user. Eatimates of $\Gamma^{4}=\Lambda \beta C^{\prime}$. D and tho covariance matrix of its estimator are aiso obtained. Witio proper specification it can be used to carry out balanced or unbalanced multivariate analyses of variance and covariance.
b. Ontput from thie program includes:
(1) Croba-product matrix $(X, Y)^{\prime}(X, Y)$

Regrestion coofficients, $B=\left(X^{\prime} Y\right)^{-1} X^{\prime} Y$ and reaiduai cronnproduct matrix $R=Y^{\prime} Y-B^{\prime} X^{\prime} Y$ For each hypothesie, $\Lambda, C, D, A B C^{\prime}-D, \Lambda\left(X^{\prime} X\right)^{-1} \Lambda^{\prime}$ and Cuc' matrices are printed.
For each hypotheais, the hypothesis sum of producte matiox, ijetatistic, F-statistic, and degrees of freedom are printed.
$\therefore$ HESTKICTIONS
Win. $l$ independent variables and $g$ dependent varialbes, the following rullintion muat be satisfied for each hypothesis being tested.

$$
(p+q)^{2}+[r, q] p+[p, q] r+[r, s] q+q \varepsilon<9000
$$

$\because$ Wir $r$ in the number of rows in $A, a$ is the number of rows in $C$, and $|x, y|$ 中notes the larger of $x$ and $y$. In any case, if $(p+q)<55$, the in"praldy is satisfied. No transgenerations are available.
3. GOMPUTATIONAL PROCEDURE

Lat $X=\left\{x_{i j}\right\} \quad j=1,2, \ldots p ; i=1,2, \ldots, n$
and $Y=\left\{y_{i j}\right\} \quad j=1,2, \ldots q i i=1,2, \ldots n$
denote the independent and dependent vaxiables respectively. The moded urodia

$$
\bar{x}=x \beta+E
$$

(") milmate $\beta$ and the residuai cross-product matrix the following matriceo we tormed and printed:
?. Croos-product matrix

$$
(X, Y)^{\prime}(X, Y)=\left(\frac{X^{\prime} X\left|\frac{X^{\prime} Y}{X^{\prime} X}\right| \frac{X^{\prime}}{}-}{-}\right)
$$

1, Inver日e of $X^{\prime} X$
$\because \quad$ lengression coefficients $B=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$
For vich hypothesis of the form $A B C^{\prime}=D$, the matrices $A, C$, and $D$ ane printed followed by
$\cdots \quad B=\Lambda B C^{\prime}-D$
i. $\quad V=\Lambda\left(X^{\prime} X\right)^{-1} A^{\prime}$
$\because \quad B-C R C^{\prime}$

1. $\quad 1 /=G^{\prime} V^{-1} G$ (the hypothesis sum of product matrix)
i. Detexminant $(S)=d_{1}$
.) Weterminant $(S+F i)=d_{2}$
W. U-atatistic $=d_{1} / d_{2}$ with degrees of freedom $(s, r, n-p)$

Approximate Fertatiatic

$$
F=\frac{1-y}{y} \frac{h}{r^{B}} \text { with rs and } h \text { degrees of freedom }
$$

where

$$
\begin{aligned}
& y=U^{1 / t} \\
& t=\sqrt{\frac{r^{2} s^{2}-4}{r^{2}+s^{2}-5}} \quad \text { if } r^{2}+\theta^{2} \neq 5 \\
& t=1 \quad \text { if } r^{2}+\theta^{2}=5 \\
& h=\left(n-p-\frac{8-r+1}{2}\right) t=\frac{x^{0}}{2}+1
\end{aligned}
$$

# This gives an exact test if $r$ or $s$ is 1 or 2 . 

## BMDO5V

GENERAL LINEAR HYPOTEESIS

## 1. GENERAL DESCRIPTION

i. This program performe the calculations required for a genexai linear hypothesie model. The independent variables are of two general types:
(1) Variable used to epecify the analysie-of-variance claseifications.
(2) Variables ued as covariates.

By unc of these variables, the program can be used for bantacod or unbalanced analysie-of-variance or covariance designg and missing - value problems.
b. 'The output of this program inciudes:
(1) Meaus and standard deviatione of the dependent variaibo and means of the covariates.
(2) Sume of equares explained by hypothesea.
(3) Eistimates of regression coefficients.
(4) Residual sums of squares.
(5) F'teste and degrees of freedom.
(6) Accuracy of coefficiente.
c. Limitations per problem:
(1) p, number of variables used to specify anaiysis-of-varianco design $\quad(1 \leq p \leq 60)$
(2) q, number of covariates ( $1 \leq p+q \leq 60$ )
(3) d, number of seta of Deaign Carda (1 $\leq \mathrm{d} \leq 999$ )
(4) $\mathrm{R}_{\mathrm{i}}$, number of replicates for the $\mathrm{i}^{\text {th }}$ oet of Design Cardis ( $1 \leq R_{i} \leq 99$ )
(5) KI , number of Hypotheais Caxde (1 $\leq \mathrm{H} \leq 57$ )
(6) $m$, number of Transgenexation Cards ( $0 \leq m \leq 60$ )
(7) $k$, number of Variable Format Cards (1 $\leq k \leq 5$ )

## 2. COMPUTATIONAL PROCEDURE

Let $x_{1}, \ldots, x_{p}$ denote tine design variablea, $x_{p+1}, \ldots . x_{p}+x_{1}$ dionote this covariates, and $y$ denote the dependent variable. Tine general linear hypotinesis model is

$$
y=\beta_{1} x_{l}+\cdots+\beta_{l} x_{l}+e \quad \text { whore } l=p+x_{l}
$$

The data are read in groupe. Within each group tho valued of tho doaign vaxiables $x_{1}, \ldots, x_{p}$ are conotant and are read in first.
These are followed by one or more sete of values of $x_{p+1}, \ldots$, $x_{p / q}$, $y$ to represent the covariates $z_{1}, \ldots, z_{q}$ and the dependent variable.

Stcp 1. For each group the number of canos in the group, the manan and otandard deviation of the depondent variable, and the meane of the covariates are computed.

Let in denote the total number of cases, let $X$ donoto tino $n \times \ell$ matrix of obeerved values of the independent variables $x_{1}, \ldots, x_{l}$, and let $y$ denote the voctor of obeerved values of the dependent variable. A hypothenia is is a vector of $l$ zeros and ones. Let $X_{h}$ denote the matiris obtained from $X$ by eliminating the $j^{\text {th }}$ columm of $X$ if and only if the $j^{\text {th }}$ coordinate of his zero. Throe hypothonen are automatically added to the list defined in 3.g. Thous have the form

$$
\begin{array}{lllll}
0, & 0, & \ldots & 0 \\
1: & 1, & \ldots & 1 \\
1, & 0, & \ldots & 1 & 1
\end{array}
$$

The first two are added to the beginning of the list, and the last is added to the end of the list. Note that if $h_{2}$ denotes the second hypothesis in the list, then $X_{h_{2}}=X$.

Step 2. For each hypothesis h the program computes:
(1) Least squares estimates $\beta_{h}$ by solving the normal equations

$$
X_{h}^{\prime} X_{h} \beta_{h} m X_{h}^{\prime} y
$$

These equations may be singular.
(2) Sum of equaxee explained by hypothesis

$$
S S_{h}=y^{\prime} X_{h} \beta_{h}
$$

(3) Residual sum of squares

$$
R_{h}=y^{\prime} y-y^{\prime} X_{h} \beta_{h}
$$

(4) Degrees of freedom of residuals

$$
d f_{h}=n-\operatorname{Rank}\left(X_{h}^{\prime} X_{\ell}\right)
$$

(5) Accuracy of coefficients

$$
a_{h}=X_{h}^{\prime} X_{h} \beta_{h}-X_{h}^{\prime} y
$$

(6) F-test

$$
F_{h}=\left[\frac{\mathrm{df}_{h_{2}}}{\mathrm{df}_{h^{\prime}}-\mathrm{df}_{h_{2}}}\right] \times\left[\frac{\mathrm{R}_{h}-R_{h_{2}}}{R_{h_{2}}}\right]
$$

